Fortgeschrittenenpraktikum Physikalische Chemie SS07
Praktikumsversuch: Quantenchemie (Prof. Dr. Thorsten Kliner)

Ort: Nach Vereinbarung

Zeit: Nach Vereinbarung

Betreuer: Imed Mehdaoui (W3-0-032) und Matthias Mehring (W3-0-037)
Login: pcf

Passwort: Wird vom Assistenten mitgeteilt (pro Gruppe neues Password)

Literatur:

a) Praktikumsskript

b) Atkins Physikalische Chemie (Gruppentheorie)

c) F. Jensen, Introduction to Computational Chemistry

d) A. Szabo, N. Ostlund, Modern Quantum Chemistry

e) Einflihrende Literatur: Nobelvortrag John Pople
http://nobelprize.org/chemistry/laureates/1998/pople-lecture.pdf

Prufungsrelevante Themen zum Antestat:
- Gruppentheorie

- Molekulare Schrédingergleichung
- Slaterdeterminanten

- Hartree-Fock-Theorie/SCF

- Konfigurationswechselwirkung

- Coupled Cluster

- Basissatze

- Z-Matrix

- Azomare Einheiten

- g03 Inputfiles (Aufbau, Optionen)



1.) Einfuhrung in Unix

Unix-Kommandos und Tools ,,man, mkdir, cd, df, du, ssh, slogin, Is, pwd, ps, top, less,
more, cat, tail, cp, mv, rm, chmod, find, diff, kill, hostname, grep, gnuplot, tar, gzip*
Aufgaben:

a) Melden Sie sich mit Ihrem login und Ihrem password an dem Arbeitsplatzrechner an.
b) Erstellen Sie ein Verzeichnis, in welchem der Praktikumsversuch durchgefuhrt wird
(Namen der Teilnehmer und Datum sollten enthalten sein)

c) Geben Sie den absoluten Pfad des Verzeichnisses an. Auf welchem Server befindet
sich das von lhnen angelegte Verzeichnis, wie viel Festplattenplatz steht auf dem
Filesystem insgesamt zur Verfiigung und wie viel Festplattenplatz kénnten Sie nutzen
(Angaben in GByte)?

d) Melden Sie sich unter Verwendung einer secure shell (ssh) auf dem Server an, auf dem
sich ihr Unterverzeichnis befindet und wechseln Sie in das von Ihnen auf der Workstation
erstellten Unterverzeichnis.

e) Wie viele Prozessoren und wie viel Hauptspeicher (in MByte) stehen Ihnen insgesamt
zur Verfugung und wie groB ist die momentane Auslastung des Servers?

f) Uben Sie den Umgang mit Unix, indem Sie einige der oben angegebenen Kommandos
ausfuhren.

2.) Quantenchemie mit Gaussian03
Aufgaben: (alle in dem von Ihnen erstellten Unterverzeichnis durchzuftihren)

2.1) Berechnung der Hartree-Fock-Energie und der Geometrie von Wasser (6-31G*
Basis):

a) Erstellen Sie z.B. mit dem Editor nedit ein Inputfile fir das Programm g03 mit
folgenden Zeilen und speichern Sie die Datei unter dem Namen H20.com

#RHF/6-31G* POP=FULL GFInput IOP(6/7=3)
Meine erste ab initio Rechnung: HF-Energie von H20
01

0-0.464 0.177 0.0

H -0.464 1.137 0.0
H 0.441 -0.143 0.0

b) Erkléren Sie die Bedeutung der einzelnen Zeilen des Inputfiles.
c) Starten Sie lhre g03 Rechnung mit folgendem Kommando: g03<H20.com>H20.out

d) Betrachten Sie das Outputfile (z.B. mit less oder nedit) und ermitteln Sie die Hartree-
Fock-Gesamtenergie und die Partialladungen von Sauerstoff und Wasserstoff.



e) Fihren Sie eine Geometrieoptimierung des Wassermolekuls durch. Erstellen Sie zu
diesem Zweck ein neues Inputfile, das sich von Ihrem ersten Inputfile durch das
zusétzliche Kommando OPT in der ersten Zeile unterscheidet. Ersetzen Sie die
kartesischen Koordinaten durch eine gendherte Z-Matrix fur das Wassermolekil und
starten Sie danach das g03 Programm erneut, wobei Sie ein entsprechend dem Namen
Ihres Inputfiles einen Namen lhres Outputfiles wéhlen sollten. Je nach Wahl lhrer
Startgeometrie und Auslastung des Servers kann die Rechnung einige Minuten dauern.

f) Analysieren Sie das Outputfile und geben Sie die optimierte Geometrie und die
dazugehorige  Gesamtenergie an. Geben Sie die einzelnen Schritte  der
Geometrieoptimierung an, indem Sie die Gesamtenergie gegen die Schritte der
Geometrieoptimierung auftragen. Dazu verwenden Sie das Programm gnuplot. Fur das
Protokoll kénnen Sie natirlich auch Windowsprogramme wie Excel verwenden.

g) Fuhren Sie analoge Rechnungen mit einer STO-3G und einer 6-311+G** Basis durch.
Was bedeuten diese Basissdtze? Wie viele primitive bzw. kontrahierte Funktionen sind
jeweils in diesen und im 6-31G*-Basissatz enthalten? Protokollieren und interpretieren
Sie lhre Ergebnisse (Gesamtenergie und optimierte Geometrie) im Sinne des
Variationsprinzips und im Vergleich zum Experiment!

2.2) Protonenaffinitat von NHa:

Ziel dieses Praktikumsversuchs ist die Berechnung der Protonenaffinitdt von Ammoniak
in der Gasphase. Dies entspricht dem Gesamtenergieunterschied von NHz und NH,".

a) Welcher molekularen Punktgruppe sind diese Molekiile zugeordnet?

b) Konstruieren Sie die Z-Matrix dieser Molekile mit Hilfe des Programms ,,molden*
(Einweisung durch den Assistenten).

c) Berechnen Sie auf Hartree-Fock-Niveau die Gesamtenergieunterschiede fur die
nachfolgenden Geometrien der Molekile unter Verwendung eines STO-3G und eines 6-
311G** Basissatzes.

NHs: r(NH)=1.012 A, <(HNH)=106,7°

NH,*: r(NH)=1.024 A, <(HNH)=109.471°

d) Geben Sie die Protonenaffinitit von Ammoniak in eV und kcal/mol an und
vergleichen Sie lhre Ergebnisse mit experimentellen Daten aus der Literatur
(Diskussion!).

2.3) Berechnung einer Potentialkurve am Beispiel des No-Molekiils:

Ziel dieses Praktikumsversuchs ist die Berechnung einer Potentialkurve fir das
Stickstoffmolekl.

a) Skizzieren Sie den Grundgedanken der Born-Oppenheimer-Naherung quantitativ
ausgehend von der molekularen Schrodingergleichung und diskutieren Sie die Giltigkeit
dieser Naherung! Informieren Sie sich dazu in Lehrbtichern oder in der Literatur.

b) Berechnen Sie die Potentialkurve des N,-Molekils auf RHF/cc-pVTZ Niveau.
Berechnen Sie dazu die Gesamtenergie als Funktion des Abstands der beiden



Stickstoffatome (von 0.7 A bis 5.0 A), wobei die Schrittweite 0.1 A betragen soll. Sie
konnen diese Rechnungen durch die Verwendung eines shell-skripts oder durch
Schreiben eines FORTRAN-Programms automatisieren. Informationen erhalten Sie ggf.
beim Assistenten.

c) Tragen Sie die Energie des N,-Molekils als Funktion des Abstands der beiden
Stickstoffatome auf (z.B. mit gnuplot). Ermitteln Sie den Gleichgewichtsabstand des
Molekiils.

d) Optimieren Sie nun die Geometrie des N,-Molekiils automatisch durch Verwendung
des OPT-Kommandos im g03 Inputfile und vergleichen Sie die Ergebnisse mit den
Resultaten aus 2.2c). Diskutieren Sie die Ergebnisse im Vergleich zum Experiment und
begrinden Sie die moglicherweise auftretenden Abweichungen hinsichtlich der
verwendeten ab initio Theorie (RHF).

e) Erstellen sie ein MO-Diagramm des N,-Molekils beim Gleichgewichtsabstand, indem
Sie die Orbitalenergien (anzugeben in eV) der kanonischen besetzten und der niedrigsten
unbesetzten RHF-Orbitale relativ zueinander auftragen. Diskutieren Sie Ihr Ergebnis im
Vergleich zur Literatur (z.B. Atkins ,,Physikalische Chemie“ oder Lehrblcher der
anorganischen Chemie) Visualisieren Sie die Orbitale unter Verwendung des Programms
molden. Legen Sie Ausdrucke der Orbitale Ihrem Protokoll bei.

f) Optimieren Sie die Geometrie des N,-Molekils automatisch durch Verwendung des
OPT-Kommandos im g03 Inputfile auf RHF, CISD, CCSD und CCSD(T) Niveau mit
einer cc-pVTZ-Basis und vergleichen Sie die Ergebnisse mit den Resultaten aus 2.2d)
bzw. dem Experiment. Wieviele primitive und kontrahierte Funktionen hat diese Basis
fir jeden Drehimpuls? Achtung! Diese Rechnungen sind ressourcenintensiv, daher
wéhlen Sie eine sinnvolle Startgeometrie und sprechen Sie lhr Vorgehen mit dem
Assistenten ab. Erhéhen Sie die Hauptspeicheranforderung auf 500 MB durch folgendes
Kommando, das in der ersten Zeile lhrer input-files stehen muss:

%MEM=800MB

Rechnen Sie ,,im Hintergrund®, indem Sie Ihre Rechnungen wie folgt starten:
g03<name_ihres_input_files>name_ihres_output_files &

Kontrollieren Sie mit ,top“ und ,tail —f name_ihres_output_files* den Fortschritt der
Rechnungen. Wieviel Rechenzeit haben Sie am Ende verbraucht?

2.4) Geometrieoptimierung organischer Molekile
Ziel dieses Praktikumsversuches ist die Geometrieoptimierung und die Berechnung von
Schwingungsfrequenzen einfacher organischer Molekiile auf RHF/6-31G* Niveau.

a) Flhren Sie eine Geometrieoptimierung des Ethen Molekils (C;H,4) durch. Geben Sie
die optimierte Geometrie, die Gesamtenergie und die Schwingungsfrequenzen an. Zur
Berechnung der Frequenzen verwenden Sie das Kommando FREQ in der ersten Zeile des
g03 Inputfiles. Verwenden Sie zur Analyse der Ergebnisse das Programm ,,molden®.



b) Fuhren Sie eine zu Aufgabe 2.4a) analoge Rechnung von Fluorethen (C,H3F) durch.
Geben Sie die optimierte Geometrie, die Gesamtenergie und die Schwingungsfrequenzen
an und interpretieren Sie lhre Ergebnisse im Vergleich zu den Resultaten aus Aufgabe
2.4a). Verwenden Sie zur Analyse der Ergebnisse das Programm ,,molden*.

2.5) Size-Consistency:

a) Berechnen Sie sowohl mit Hartree-Fock als auch mit Konfigurationswechselwirkung
mit Einfach- und Doppelanregungen (CISD) die Gesamtenergie eines Systems aus zwei
Wasserstoffmolekilen (interner H-H-Abstand 1.401 Bohr, Basis 6-31-G**) bei einem
von lIhnen gewéhlten Abstand, bei dem die beiden Molekdle nicht wechselwirken.

b) Vergleichen Sie die von Ihnen berechneten Energien mit denen der Monomere und
diskutieren Sie das Ergebnis.

3.) Sicherung der Ergebnisse:

a) Erstellen Sie ein tar-file der von Ihnen erzeugten Dateien und komprimieren Sie es mit
Hilfe des Programms gzip.

b) Schicken Sie sich eine email, die das tarfile als Anhang enthalt, so dass Sie ggf. zu
Hause auf Ihre Files zugreifen kdnnen.



Hinweise zum
Fortgeschrittenenpraktikum Physikalische Chemie SS07
Praktikumsversuch: Quantenchemie (Prof. Dr. Thorsten Kliiner)
1.) Einfiihrung in Unix

Hilfe zu den einzelnen Unix-Kommandos erhalten sie mit: man Befehl

Mochten Sie sich beispielsweise die Hilfe zum Befehl df anzeigen lassen, dann geben Sie in eine
Shell ein: man df

a)

Login name: pcf
Passwort: ,,Wird vom Assistenten ausgegeben

b)

mkdir - Verzeichnisse anlegen.
mkdir namel name2 Datum; legt ein Verzeichnis mit dem Namen namel name2 Datum an.

c)
pwd - zeigt den absoluten Pfad an.

df - zeigt die Belegung der gemounteten Filesysteme an.
df -k; zeigt die Belegung der gemounteten Filesysteme in Kilobytes an.

d)

ssh - Login auf einem Entfernten Rechner.
ssh name_des rechners; einloggen auf dem Rechner name des rechners.

cd - in ein Verzeichnis wechseln.
cd namel name2 Datum; wechselt in das Verzeichnis namel name2 Datum.

e)
top - Verbrauchs-Informationen von Prozessen ausgeben.

f)

Uben Sie den Umgang mit Unix, indem Sie die unten aufgefiihrten Befehle der Reihe nach
ausprobieren.

Offnen Sie zunichst den Texteditor nedit und schreiben Sie 2-3 Zeilen beliebigen Text. In die letzte
Zeile schreiben Sie ,,SCF Done“. Speichern Sie dann unter dem Namen Dateil ab.

touch - legt eine (leere) Datei an bzw. dndert den Zeitstempel einer Datei.
touch Datei2; besteht Datei2 noch nicht, wird diese neu angelegt.

Is - Verzeichnis-Inhalte auflisten.



less - Dateien anzeigen.
less Dateil; zeigt Dateil an.

cp - Dateien und Verzeichnisse kopieren.
cp Dateil Datei2; legt eine Kopie von Dateil unter dem Namen Datei2 ab.

mv - Dateien und Verzeichnisse umbenennen oder verschieben.
mv Datei2 Datei3; benennt Datei2 in Datei3 um.

tar - Dateien und Verzeichnisse archivieren.
tar -cf Dateil.tar Dateil; erstellt das Archiv Dateil.tar aus Dateil.
tar -xf Dateil.tar; extrahiert das Archiv Dateil.tar.

gzip - Dateien komprimieren.
gzip Dateil.tar; erzeugt die komprimierte Datei Dateil.tar.gz aus Dateil .tar.

gunzip - Dateien dekomprimieren.
gunzip Dateil .tar.gz; dekomprimiert Dateil.tar.gz.

ps — Prozessinformationen anzeigen lassen.
ps -ef; zeigt Prozessinformationen ausfiihrlich an.

kill - einen Prozess beenden.
kill 7123456789; beendet Prozess mit der PID 123456789.

top - Verbrauchs-Informationen von Prozessen ausgeben.
top; zeigt mehr Informationen als ps -ef an (Verbrauch von Memory, CPU-Zeit).

grep - Zeilen aus Dateien oder einem Dateistrom herausfiltern.

grep 'SCF Done' Dateil; Filtert den String 'SCF Done' aus Dateil heraus.

grep 'SCF Done' Dateil > out ; Filtert den String 'SCF Done' aus Dateil heraus und leitet das
Ergebnis in die Datei out um.

diff - Dateien miteinander vergleichen.
diff Dateil Datei3; vergleicht Dateil und Datei3.

rm — Dateien und Verzeichnisse 13schen.
rm Datei3; 16scht Datei3.

2.) Quantenchemie mit Gaussian03
2.1)a)

Hinweis: Filigen Sie am Ende der Datei zwei Leerzeilen ein, da das Programm g03 sonst mit einer
Fehlermeldung abbricht.

f)

Um ein Bild im postscript-Format mit gnuplot zu erstellen gehen Sie folgendermaf3en vor:

- Filtern Sie zunichst die Hartree-Fock Energien der einzelnen Schritte mit dem Befehl grep heraus
und leiten diese in die Datei H20_opt.rhf um:
grep 'SCF Done' name_der datei.out > H2O opt.rhf



- Schauen Sie sich die Datei mit less an. In der 5. Spalte (jede Spalte wird durch Leerzeichen
getrennt) sollten die Hartree-Fock Energien stehen.

- Fiihren Sie den Befehl gnuplot aus.

— Um die Gesamtenergie gegen die Schritte der Geometrieoptimierung aufzutragen fiihren Sie

dann folgenden Befehl aus:
plot '"H20_opt.rhf' using 5 with linespoints pointsize 2

- Formatieren Sie das Bild mit beispielsweise folgenden Befehlen:
set xlabel 'Anzahl der Schritte'

set ylabel 'Energie / Hartree'

set xtics 0,1,10

set title 'Bild zu Aufgabe 2.1 f)'

- Mit replot kdnnen Sie sich das Ergebnis der Befehle anschauen.

- Um das Bild im postscript-Format zu speichern fithren Sie anschlie8end folgende Befehle
der Reihe nach aus:

set terminal postscript

set output '"H20_opt.rhf.ps’

replot

set term x11

— Beenden Sie dann das Programm mit quit.

— Betrachten Sie das Ergebnis mit gsview:
gsview H20 opt.rhf.ps

— Ausfiihrliche Informationen zu gnuplot finden Sie auf der gnuplot Homepage:
http://www.gnuplot.info/.

— Einen Grundkurs fiir gnuplot mit vielen niitzlichen Tipps finden Sie beispielsweise hier:
http://userpage.fu-berlin.de/~voelker/gnuplotkurs/gnuplotkurs.html

2.2) b)

— Starten Sie das Programm molden mit dem Befehl: molden4.3.irix & (bzw. molden4.0.

linux, wenn Sie auf einem Linux-Rechner arbeiten); Es 6ffnet sich das Molden Control Fenster
(blau) und das MOLDEN Fenster (schwarz).

Molden Conrtol
- Klicken Sie im Molden Control Fenster zunichst auf den Button Solid und wihlen Sie
Ball and Stick aus. Anschlieflend klicken Sie auf den Button Shade.

- Um den Z-Matrix Editor zu starten klicken Sie auf den Button ZMAT Editor.
Zmatrix editor

- Im Zmatrix editor klicken Sie auf den Button Add Line und wihlen Sie ein Stickstoff-
Atom aus. Im MOLDEN Fenster erscheint ein Stickstoff-Atom.




- Klicken Sie erneut auf den Button Add Line, wihlen Sie ein Wasserstoff-Atom aus und
klicken Sie dann auf das Stickstoff-Atom im MOLDEN Fenster.

— Klicken Sie nochmals auf den Button Add Line und wihlen Sie ein Wasserstoff-Atom aus.
Anschlieflend klicken Sie zuerst auf das Stickstoff-Atom und erst dann auf das Wasserstoff-Atom.

- Verfahren Sie analog fiir das dritte Wasserstoff-Atom. Achten Sie auf die Hinweise, die
Ihnen eventuell das Programm gibt.

- Passen Sie die Winkel, falls erforderlich, im Zmatrix Editor an, um eine verniinftige
Startgeometrie zu erhalten.

- Um eine Datei mit der Z-Matrix auszugeben, klicken Sie im Zmatrix Editor zunichst auf
den Button Gaussian, geben dann einen Dateinamen in das Feld File name ein und klicken
anschlie3end auf den Button Write Z-Matrix.

— Ausfiihrliche Informationen zum Programm erhalten Sie auf der molden Homepage: http:
//www.cmbi.ru.nl/molden/molden.html

2.3)b)

Fiir diese Aufgabe konnen Sie sich eine Vorlage eines Shell-Skriptes kopieren, das sich im
Verzeichnis /h2/home/pcf/SKRIPTE befindet und den Dateinamen N2_ccpvtz.tcsh_template hat.
Kopieren Sie sich das Shell-Skript zundchst in Ihr Verzeichnis, bearbeiten Sie es dann entsprechend
Thren Anforderungen und fithren es dann mit ./N2_ccpvtz.tcsh_template aus. Falls Sie die
Fehlermeldung Permission denied erhalten, miissen Sie die Ausfiihrungsrechte der Datei mit
folgendem Befehl dndern: chmod u+x N2_ccpvtz.tcsh_template.

c)
Fiir diese Aufgabe konnen Sie wieder die Programme grep und gnuplot verwenden.

Um mehrere Dateien gleichzeitig zu filtern verwenden Sie einen Stern (*) im Dateinamen nach
folgendem Schema:
grep 'SCF Done' N2 DN2*out > N2 Potentialkurve.rhf

Editieren Sie dann die Datei N2_Potentialkurve.rhf, so dass die Bindungsabstdnde des N»>-Molekiils
immer in einer eigenen Spalte stehen (wichtig zum Plotten mit gnuplot).

Vorher: N2 DN2 2.5 ccpvtz.out: SCF Done: E(RHF) = -108.148474879 A.U. after 5 cycles
Nachher: N2 DN2 2.5 ccpvtz.out: SCF Done: E(RHF) = -108.148474879 A.U. after 5 cycles

Konsultieren Sie Punkt 2.1 f) fiir die Verwendung von gnuplot (Hinweis: Um Spalte 2 und Spalte

8 einer Datei zu benutzen verwenden Sie den Befehl using 2:8; so konnen Sie x- und y-Achse
definieren).

e)
Starten Sie das Programm molden mit dem Befehl: molden4.3.irix &

Lesen Sie die entsprechende Datei ein, indem Sie im Molden Control Fenster zunichst auf den
Button Read klicken und dann die entsprechende Datei auswihlen.



Um Orbitale zu visualisieren, klicken Sie zuerst auf den Button Dens. Mode, anschlieSend auf den
Button Space und geben fiir Contour Value 0.3 ein. Probieren Sie auch andere Werte fiir Contour
Value aus.

Die verschiedenen Orbitale lassen sich auswihlen, wenn Sie im Molden Control Fenster auf den
Button Orbital klicken.

Bilder der Orbitale lassen sich im postscript-Format ausgegeben, indem Sie im Molden Control
Fenster auf den Button postscript klicken.

2.4)a) +b) +¢)

Verwenden Sie das Programm molden, um sich die IR- und Raman-Spektren anzeigen zu lassen
(Button Norm. Mode), geben Sie die Spektren im postscript-Format aus und fiigen Sie diese Ihrem
Protokoll bei.

Zur Analyse der Spektren ist es sehr hilfreich, wenn Sie sich mit molden die Normalschwingungen
visualisieren. So lassen sich die Peaks in den Spektren sehr leicht zuordnen.

2.5)

Verwenden Sie fiir diese Aufgabe den 6-31G** Basissatz.
Die Einheit Bohr kdnnen Sie mit der Option Units=AU in der ersten Zeile Ihres Input-Files
verwenden.

3)

Bevor Sie die Ergebnisse sichern, kontrollieren Sie alle Outputs nach Fehlermeldungen. Dies geht
sehr einfach mit dem grep Befehl: grep -i 'error' *.out

Eine beliebte Fehlerquelle ist auch die Verwendung falscher Geometrien. Dies ldsst sich hdufig
vermeiden, wenn Sie im Output die Punktgruppe des Molekiils iiberpriifen, die das Programm g03
automatisch bestimmt. Fiir C2H4 sollte g03 die Punktgruppe D2h bestimmt haben. Ist dies nicht der
Fall, so haben Sie vermutlich die Geometrie falsch definiert.

4)

Fiigen Sie die Inputs dem Protokoll als Anhang bei.



5 Basis Sets

Ab inifio methods try to derive information by soiving the Schrédinger equation without
fitting parameters to experimental data. Actaally, ab initio methods also make use of
experimental data, but in a somewhat more subtle fashion. Many different approximaie
methods exist for solving the Schrédinger equation, and the one to use for a specific
problem is usually chosen by comparing the performance against known experimental
data. Experimental data thus guides the selection of the computational maodel, rather
than directly entering the computational procedure.

Oue of the approximations inherent in essentially all ab initio methods is the
introduction of a basis set. Expanding an unknown function, such as a molecular orbital,
0 a set of known functions is not an approximation, if the basis is complete. However, a
complete basis means that an infinite number of functions must be used, which is
impossible in actual calculations. An unknown MO can be thought of as a function in
the infinite coordinate system spanned by the complete basis set. When a finite basis 1s
used, only the components of the MO along those coordinate axes corresponding to the
selected basis can be represented. The smaller the basis, the poorer the representation.
The type of basis functions used also influence the accuracy. The better a single basis
function is able to reproduce the unknown function, the fewer are basis functions
necessary for achieving a given level of accuracy. Knowing that the computational effert
of ab initiv methods scales formally as at least M %, it is of course of prime importance o
make the basis set as small as possible without compromising the aceuracy.'

5.1 Slater and Gaussian Type Orbitals

There are two types of basis functions (also called Atomic Orbitals, AO, although in
general they are not solutions to an atomic Schridinger equation) commonty used in
electronic structure calculations: Slater Type Qrbitals (STO) and Gaussici Tvpe
Orbitaly (GTO). Slater lype orbitals? have the functional form

X&,’,u,\i;n(r; 6]'- ‘.‘9) - NY!,H.E(Gv 'r'r/‘,]'rih] € - (5 1}

N is a normalization constant and Y, are the usual spherical harmoaic functions. The
exponential dependence on the distance between the nucleus and the electron MITOLS
the exact orbitals for the hydrogen atorm. However, STOs do not have any radial nodes.
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nodes in the radial part are introduced by making linear combinations of STOs. The
exponential dependence ensures a fairly rapid convergence with increasing number of
fonctions, however, as noted in section 3.5, the calculation of three- and four-centre two-
electron integrals cannot be performed analytically. STOs are primarily used for atomic
and diatomic systems where high accuracy is required, and in semi-empirical methods
where all three- and four-centre integrals are neglected.

Gaussian type orbitals” can be written in terms of polar or cartesian coordinates
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where the sum of 7,/, and [. determines the type of orbital (for example
I+ 1y + 1 =11s a p-orbital). Although a GTO appears similar in the two sets of
coordinates, there is a subtle difference. A d-type GTO written in terms of the spherical
functions has five components (Y25, Y21, ¥oq, Ya-1, ¥2 o), but there appear to be six
components in the Cartesian coordinates (x%,y?, zz,xy,xz,yz). The Tatter six functions,
however, may be transformed to the five spherical d-functions and one additional
s-funetion {x? 4 y? + :2). Similarly, there are 10 Cartesian ““f-functions™ which may be
transformed into seven spherical f-functions and one set of spherical p-functions.
Modern programs for evaluating twoe-electron integrals are geared to Cartesian coordi-
nates, and they generate pure spherical d-functions by transforming the six Cartestan
components to the five spherical functions. When only one d-function is present per
atom the saving by removing the extra s-function is small, but if many d-fanctions and/
or higher angular moment functions (f-, g-, h- ete. functions) are present, the saving can
be substantial. Furthermore, the use of only the spherical components reduces the
problems of linear dependence for large basis sets, as discussed below.

The 2 dependence in the exponential makes the GTQ inferior to the STOs in two
aspects. At the nucleus the GTO has zero slope, in contrast to the STO which has a
“cusp™ (discontinous derivative), and GTOs have problems representing the proper
behaviour near the nucleus. The other probiem is that the GTO falls off too rapidly far
from the nucleus compared with an STO, and the “tail” of the wave function is
consequently represented poorly. Both STOs and GTOs can be chosen to form a
complete basis, but the above considerations indicate that more GTOs are necessary for
achieving a certain accuracy compared with STOs. A rough guideline says that threc
times as many GTOs as STOs are required for reaching a given level of accuracy. The
increase i number of basis functions, however, is more than compensated for by the
ease by which the required integrals can be calculated. In terms of computational
efficiency, GTOs are therefore preferred, and used almost universally as basis functions
mn electronic structure calculations. Furthermore, essentially all applications take the
GTOs to be centred at the nuclei. For certain types of calculation the centre of a basis
function may be taken not to coincide with a nucleus,.for example being placed at the
centre of a bond.

5.2 Classification of Basis Sets

Having decided on the type of function (STQ/GTO) and the location (nucler), the most
important factor 1s the number of functions to be used. The smallest number of functions
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possible is a minimuen basis set. Only enough functions are employed to contain all the
electrons of the neutral atom(s). For hydrogen (and helium) this means a single
s-function. For the first row in the periodic table it means two s-functions (1s and 23) and
one set of p-functions {2p,, 2p, and 2p.). Lithium and beryllium formally only require
two s-functions, but a set of p-functions is usvally also added. For the second row
elements, three s-functions (1s, 25 and 3s) and two sets of p-functions (2p and 3p) are
used.

The next improvement in the basis sets is a doubling of ali basis functions, producing
a Double Zeta (DZ) type basis. The term zeta stems from the fact that the exponent of
STO basis functions is often denoted by the greek letter (. A DZ basis thus employs
two s-functions for hydrogen (1s and 1s’), four s-functions (ls, 1s’, 2s and 2s') and two
p-functions (2p and 2p’} for first row elements, and six s-functions and four p-functions
for second row elements. The importance of a DZ over a minimum basis can be
tllustrated by considering the bonding 'in HCN (Figure 5.1). The C-H bond will
primarily consist of the hydrogen s-orbital and the p_-orbital on C. The n-bond between
C and N will consist of the p, (and p y) orbitals of C and N. The 7-bond will have a more
diffuse electron distribution than the C-H o-bond. The optimum exponent for the
carbon p-orbital will thus be smaller for the x-direction than for the z-direction, If only a
single set of p-orbitals is available (minimum bagsis) a compromise will be necessary. A
DZ basis, however, has two sets of p-orbitals with different expenents. The tighter
function (farger exponent) can enter the C-H o-bond with a large coefficient, while the
more diffuse function (small exponent) can be used primarily for describing the C—-N 7-
bond. Doubling the number of basis functions thus aliows for a much better description
of the fact that the electron distribution is different in different dircctions.

The chemical bonding cccurs between valence orbitals. Doubling the s-functions in
for example carbon allows for a better description of the ]s-electrons. However, the [s-
orbital is essentially independent of the chemical environment, being very close to the
atomic case. A variation of the DZ type basis only doubles the number of valence
orbilals, producing a split valence basis. In actual calculations a doubling of the core
orbitals would rarely be considered, and the term DZ basis is also used for split valence
basis sets (or sometines VDZ, for valence double zeta).

The next step up in basis set size is a Triple Zeta {TZ). Such a basis containg three
times as many functions as the minimum basis, 1.e. six s-functions and three p-functions
for the first row elements. Some of the core orbitals may again be saved by only splitting
the valence, producing a triple split valence basis set. Again the term TZ is used to cover
both cases. The names Quadruple Zeta (Q7) and Quintuple Zeta (57, not QZ) for the
‘next levels of hasis sets are also used, but large sets are often given explicitly in terms of
the number of basis functions of each type.

Figure 5.1 A double zeta basis allows for different bonding in different directions
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So far only the number of s- and p-functions for each atom (first or second row in the
periodic table) has been discussed. in most cases higher angular momentum functions
are also important, these are denoted polarization functions. Consider again the bonding
in HCN in Figure 5.1, The C—H bond is primarily described by the hydrogen s-orbital(s)
and the carbon s- and p_-orbitals, [t is clear that the electron distribution along the bond
will be different than that perpendicular to the bond. If only s-functions are present on
ihe hydrogen, this cannot be described. However, if a set of p-orbitals is added to the
hydrogen, the p_ component can be used for improving the description of the H-C hond.
The p-orbital introduces a polauzation of the s-orbital(s). Similarly, d-orbitals can
be used for polarizing p-orbitals, f-orbitals for polavizing d-orbitals etc. Once a
p-orbital has been added to a hydrogen s-crbital, it may be argued that the p-orbital now
should be polarized by adding a d-orbital, which should be polarized by an f-orbital, etc.
For single determinant wave functions, where electron correlation is not considered, the
first set of polarization functions {(i.e. p-functions for hydrogen and d-functions for heavy
atoms) is by far the most important, and will in general describe all the important charge
polarization effects.

If methods including electron correlation are used, higher angular momentum
functions are essential. Blectron cormrelation describes the enmergy lowering by the
electrons “avoiding” each other, beyond the average effect taken into account by HF

. methods. Two types of correlation can be identified, an “in—out”and an “angular”
correlation. The “in—out”™ or radial correlation refers to the situation where one
electron is close to, and the other Tar from, the nucleus. To describe this, the basis set
needs functions of the same type, but with different exponents. The angular correlation
refers to the situation where two clectrons are on opposite sides of the nucleus. To
describe this, the basis set needs functions of same magnitude exponents, but different
angular momenta. For example, to describe the angular correlation of an s-function, p-
functions (and d-, {-, g-functions etc.) are needed. The angular correlation is of similar
importance as the radial correlation, and higher angular momentum functions are
consequently essential for correlated calculations. Although these properly should be
labelled correlation functions, they also serve as polarization functions for HF wave
functions, and it is common to denote them as polarization functions. Normally only the
correlation of the valence electrons is considered, and the exponent of the polarization
functions should be of the same magnitude as the valence s- and p-functions. In contrast
to HF methods, the higher angular momentum functions (beyond the first set of
polarzation functions) are guite important. Or alternatively formulated, the convergence
in terms of angular momentum is slower for correlated wave functions than at the HF
level. For a basis set which is complete up to angular momentum /., numerical analysis
suggests that the asymptotic convergence at the HF level is exponential {i.e. ~exp(—-L)),
while it is ~ (L 4+ 1) at correlated levels.*

Polarization functions are added to the chosen sp-basis. Adding a single set of
polarization fanctions (p-functions on hydrogens and d-functions on heavy atomns) to the
DZ basis forms a Double Zeta plus Polarization (DZP) type basis. There is a variation
where polarization functions are only added to non-hydrogen atoms. This does not mean
that polarization functions are nof important on hydrogens. However, hydrogens often
have a “passive’ role,.sitting at the end of bond which does not take an active part in the
property of interest. The errors introduced by not including hydrogen polarization
functions are often rather constant and, as the interest is vsually in energy differences,
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they tend to cancel out. As hydrogens often account for a large number of atoms in the
system, a saving of three basis functions for each hydrogen is significant. If hydrogens
play an important role in the property of interest, it is of course not a good idea to
neglect polarization functions on hydrogens.

Similarly to the sp-basis sets, multiple sets of polarization functions with different
exponents may be added. If two sets of polarization functions are added to 2 TZ sp-basis,
a Triple Zeta plus Double Polarization (TZ2ZP) type basis is obtained. For larger basis
sets with many polarization functions the explicit composition in terms of number and
types of functions is usually given. At the HF level there is usually little gained by
expanding the basis set beyond TZ2F, and even a DZP type basis set usually gives
“good” results {compared to the HE limit). Correlated methods, however, require more,
and higher, angular momentum, polarization functions to achieve the same level of
convergence.

Before moving on we need to introduce the concept of basis set balance. [ principle
many sets of polarization functions may be added to a smail sp-basis. This is not a good
idea. If an insufficient number of sp-functions has been chosen for describing the
fundamental electron distribution, the optimization precedure used in obtaining the
wave function (and possibly also the geometry} may try to compensate for inadequacies
in the sp-basis by using higher angular momenturmn functions, producing artefacts. A rule
of thumb says that the number of functions of a given type should at most be one less
than the type with one lower angular momentum. A 3sZpid basis is balanced, but a
3s2p2d2flg basis 15 too heavily polanzed. If may not be necessary to polarize the basis
all the way up, thus a 5s4p3d2flg basis is balanced, but if it is known (for example by
comparison with experimental data) that t- and g-functions are unimportant, they may
be left out. Furthermore, it may be that 2 d-functions are sufficient for the given purpose,
aithough a 3s4pld basis would be considered underpolarized.

Anocther aspect of basis set balance is the occasional use of mixed basis sets, for
example a DZP quality op the atoms in the “interesting” part of the molecule and a
miniinum basis for the “spectator” atoms. Another example would be addition of
polanzation functions for only a few hvdrogens which are located “near” the reactive
part of the system, For a large molecule this may lead to a substantial saving in the
number of basis functions. It should be noted that this may bias the results and can create
artefacts. For example, a calculation on the H; molecule with a minimum basis at one
end and a DZ basis at the other end will predict that H has a dipole moment, since the
variational principle will preferentially place the electrons near the centre with the most
basis functions. The majority of calculations are therefore performed with basis sets of
the same guality (minimum, DZP, TZ2P, ...} on all atoms, possibly cutting polarization
and/or ciffuse (small exponent) functions on hydrogens. Hven so, it may be argued that
small basis sets inherently tend to be unbalanced. Consider for exampie the LiF
molecule in a minimum or DZ type basis. This will have a very ionic structure, Li*F",\
with nearly all the valence electrons being located at the fluorine. In terms of number of
basis functions per electron, the Li basis is thus of a much higher quality than the ‘F
basis, and thereby unbalanced. Of course this effect diminishes as the size of the atomic
basis set increases. ‘

Except for very small systems it is impractical to saturate the basis set so that the
absolute error in the energy is reduced below chemical accuracy, for example | keal/
mol. The important point in choosing a balanced basis set is o keep the error as constant
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as possible. The use of mixed basis sets should therefore only be done after careful
consideration. Furthermore, the use of small basis sets for systems containing elements
with substanfially different numbers of valence electrons (like LiF) may produce
artefacts.

Having decided on the number of basis functions (from a consideration of the
property of interest and the computational cost), the questiion becomes: how are the
values for the exponents in the basis functions chosen? The values for s- and p-functions
are typically determined by perfornung variational HF calculations for atoms, using the
exponents as variational parameters. The exponent values which give the lowest energy
are the “best”, at least for the atom. In some cases the optiraum exponents are chosen on
the hasis of minimizing the energy of a wave function which includes electron
corvetation. The HF procedure cannot be used for determining exponents of polarization
functions for atoms. By definition these functions are unoccupied in atoms, and
therefore make no contribution to the energy. Suitable polarization exponents may be
chosen by performing variational calculations on molecular systems (where the HF
energy does depend on polarization functions) or on atoms with comrelated wave
functions. Since the main function of higher angular momentum functions is to recover
electron carrelation, the latter approach is usually preferred. Often only the optimum
exponent is determined for a single polarization function, and multiple polarization
functions are generated by splitting the exponents symmetrically around the optimum
value for a single function. The splitting factor is typically taken in the range 2-4. For
example if a single d-function for carbon has an exponent value of 0.8, two polarization
functions may be assignad with exponents of 0.4 and 1.6 (splitting factor of 4).

5.3 Even- and Well-tempered Basis Seis

The optimization of basis function exponents is an exampie of a highly neon-linear
optimization (Chapter 14). When the basis set becomes large, the optimization problem
is no longer easy. The basis functions start to become linearly dependent (the basis
approaches completeness) and the energy becomes a very flat function of the exponents,
Furthermore, the multiple local minima problem is encountered. An analysis of basis
sets which have been optimized by variational methods reveals that the ratio between
fwo successive exponents is approximately constant. Taking this ratio to be constant
reduces the optimization problem to only two parameters for each type of basis function,
independently of the size of the basis. Such basis sets were labelled even-fempered basis
sets, with the ith exponent given as {; = ¢3' where o and § are fixed constants for a
given type of function and nuclear charge. It was later discovered that the optimum o
and {3 constants to a good approximation can be written as functions of the size of the
basis set, M.

G=eaf, i=1,2,....M
In{ng) =blnM+5' {
Ina=aln{f—1)+a

LA
o)
=2

The constants ¢, ', b and A’ depend only on the atom type and the type of function.
Even-tempered basis sets have the advantage that it is easy to generate a sequence of
basis sets which are guaranteed to converge towards a complete basts. This is useful if
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the atternpt is to extrapolate a given property to the basis set limit. The disadvantage is
that the convergence is somewhat slow, and an explicitly optimized basis set of a given
size will usually give a better answer than an even-tempered basis of the same size.

Even-tempered basis sets have ihe same ratio between exponents over the whole
range. From chemical considerations it Is usually preferable to cover the valence region
better than the core region. This may be achieved by well-tempered basis sets.” The idea
is similar o the even-tempered basis sets, the exponents are generaled by a suitable
formula containing only a few parameters to be optimized. The exponents in a well-
tempered basis of size M are generated as:

.

G = adi! 1+7<ﬁ> . i=1.2,....M (5.4)

The parameters o, 3, v and ¢ are optimized tor each atom. The exponents are the same
tor all types of angular mormenturm functions, and s-, p- and d-functions (and higher
angular momentum) consequently have the same radial part.

Optimization of basis sets is not something the average user need to worry about,
Optimized basis sets of many different sizes and qualities are available either in the
forms of tables, or bwilt into the computer programs. The user “merely’ has to select a
suitable basis set. However, if the interest is in specialized properties the basis set may
need to be tailored to meet the specific needs. For example if the property of interest is
an accurate value for the electron density at the nucleus {for example for determining
the Fermi contact contribution to spin—spin coupling, see section 10.7.2) then basis
functions with very large expousants arc required. Aliernatively, for calculaling
hyperpolarizabilites very diffuse {unctions are required. In such cases the basis function
optimization is in terms of the property of interest, and not in terms of energy. Basis
functions are added untii the change upon addition of one extra function is less than a
given threshold.

5.4 Contracted Basis Seis

One disadvantage of all energy optimized basis sets is the fact that they primarily
depend on the wave function in the region of the inner shell electrons. The |s-electrons
account for a large part of the total energy, and minimizing the energy will tend to make
the basis set optimum for the core electrons, and less than optimum for the valence
elecirons. However, chemistry is mainly dependent on the valence electrons.
Furthermore, many properties (for example polarizabilityy depend mainly on the wave
function “tail” (far from the nucleus), which energetically is unimportant. An ¢nergy
optimized basis set which gives a good description of the outer part of the wave funclion
therefore needs to be very large, with the majority of the functions belng used to
describe the ls-electrons with an accuracy comparable to that for the outer electrons i
an energetic sense. This is not the most efficient way of designing basis sets for
describing the outer part of the wave function. Instead energy optimized basis scts are
usually angmented explicitly with diffuse functions (basis functions with small
exponents). Diffuse functions are needed whenever loosely bound electrons aré present
(for example in anions or excited states) or when the property of interestis dependenton
the wave function tail (for example polarizability).
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The fact that many basis functions go into describing the energetically important, but
chemically unimportant, core electrons is the foundation for centracted basis sets.
Consider for example a basis set consisting of 10 s-functions {and seme p-functions) for
carbon. Having optimiized these [0 exponents by variational calculations on the carbon
atom, mayhe six of the 10 functions are found primarily to be used for describing the Js-
orbital, and two of the four remaining describe the “inner™ part of the 2s-orbital. The
important chemical region is the outer valence. Out of the 10 functions, only two are
actuatly used for describing the chermically interesting phenomena. Considering that the
computational cost increases as the fourth power (or higher) of the number of basis
functions, this is very inefficient. As the core orbitals change very little depending on the
chemical bonding situation, the MO expansion coefficients in front of these mmer basis
functions also change very littie. The majority of the computational effort is therefore:
spent describing the chemically uninteresting part of the wave function, which
furthermore 1s almost constant,

Consider now making the variafional coefficienis in front of the inner basis functions
constant, 1.e. they are no Jonger parameters to be determined by the variational principle.
The 1s-orbital is thus described by a fixed linear combination of say six basis functions.
Stmilarly the remaining four basis functions may be contracted into only two functions,
for example by fixing the coefficient in front of the inner three functions. In doing this
the number of basis functions to be handled by the variationzl procedure has been
reduced from 10 to three.

Combining the full set of basis functions, known as the primirive GTOs (PGTOs), mto
a smaller set of functions by forming fixed linear combinations is known as basis set
contraction, and the resulting functions are called contracted GTOs (CGTOs).

,—\
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x(CGTO) = > awy; (PGTO)

The previously introduced acronyms DZP, TZ2P ete., refer to the number of contracted
basis functicns. Contraction is especially useful for orbitals describing the inner (core)
electrons, since they require a relatively large number of functicns for representing the
wave function cusp near the nucleus, and furthermore are largely independent of the
environment. Contracting a basis set will always increase the energy, since it is
a restriction of the number of variational parameters, and makes the basis set less
flexible, but will also reduce the computaticnal cost significantly. The decision 1s thus
how much loss in accuracy is acceptable compared to the gain in computational
efficiency.

The degree of contraction 1s the number of PGTOs entering the CGTO, typically
varying between 1 and 10. The specification of a basis set in terms of primitive and
contracted functions is given by the notation (10sdpld/4slpy — [3s2pld/2slp]. The
basis in parentheses is the number of primitives with heavy atoms (first row elements)
before the siash and hydrogen after. The basis in the square brackets is the number of
contracted functions. Note that this does not tell how the contraction is done, it only
indicates the size of the final basis (and thereby the size of the variational problem in HF
calculations).

There are two different ways of contracting a set of primitive GTOs to a set of
contracted GTOs: segmernted and general contraction. Segmented contraction is the
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oldest method, and the one used 1o the above example. A given set of PGTOs is
partitioned into smaller sets of functions which are made into CGTO by determining
suitable coefficients. A 10s basis may be contracted to 3s by taking the inner six
funictions as one CGTO, the next three as the second CGTO and the one remaining
PGTO as the third “contracted” GTO.

1 (CGTO) =3~ ayx; (PGTO)

=

i

x2(CGTO) apx; (PGTO)
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v3(CGTO) = x 10 (PGTO)

In a segmented contraction each primitive as a rule is only used in one contracted
function. In some cases it may be necessary to duplicate one or two PGTGs in two
adjacent CGTOs. The coniraction coefficients can be determined by a variational
optimization, for example from an atomic HF calculation.

In a general contraction all primitives (on a given atom) and of a given angular
meomentum enter all the contracted functions having that angular momentwn, but with
different contraction coefficients.

1
X 1{CGTO) = > apx; (PGTO)
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One popular way of obtaining general contraction coefficients is from Atomic Natural
Orbitals (ANO), to be discussed in section 3.4.4. The difference between seginented and
general contraction may be illusirated as shown in Figure 5.2.

There are many different contracted basis sets available 1n the literature or buill into
programs, and the average user usually only needs to select a suitable quality basis for
the calculation. Below is a short description of some basis sets which often are used in
routine calculations.

5.4.1 Pople Style Basis Sets

STO-nG busis sets  Slater Type Orbital consisting of # PGTOs. This is a mipimum
type basis where the exponents ot the PGTO are determined by fitting 1o the STO, rather
than optimizing them by 2 variational procedure. Although basis sets with = 2 -5 have
been derived, il has been found that using more than three PGTOs Lo represent the STQ
gives little improvement, and the STO-3G basis is a widely used mininwum basis. Tl?ls
type of basis set has been determined for many elements of the periodic table. The
desienation of the carbon/hydrogen STO-3G basis is (653p/3s) —- {2slp/ls).
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Figure 5.2 Segmented and general contraction

k-nimG basis sets  These basis sets have besn designed by Pople and co-workers, and
arc of the split valence type, with the k in front of the dash indicating how many PGTOs
are used for representing the core orbitals, The nim after the dash indicate both how
many functions the valence orbitals are split into, and how many PGTOs are used for
their representation. Two values (e.g. nf) indicate a split valence, while three values (e.g.
nlm) indicate a triple split valence. The values before the G (for Gaussian) indicate the
s- and p-functions in the basis; the polarization functions are placed after the G. This
type of basis sets has the further restriction that the same exponent is used for both the s-
and p-functions in the valence. This increases the computational efficiency, but of course

" decreases the flexibility of the basis set. The exponents in the PGTO have been
optimized by variational procedures.

3-21G 'This is a split valence basis, where the core orbitals are a contraction of three
PGTOs, the inner part of the valence orbitals is a contraction of two PGTOs and the
outer part of the valence is represented by one PGTO.® The designation of the carbon/
hydrogen 3-21G basis is {6s3p/3s) — [352p/2s]. Note that the 3-21G basis containg the
samne number of primitive GTOs as the STO-3G, however, it is much more flexible as
there are twice as many valence functions which can combine freely to make MOs.

631G This is also a split valence basis, where the core orbitals are a contraction of
six PGTOs, the inner part of the valence orbitals is a contraction of three PGTCOs and the
outer part of the valence represented by one PGTO.” The designation of the carbon/
hydrogen 6-31G basis is (10s4p/4s) — [3s2p/2s]. In terms of contracted basis
functions it contains the same number as 3-21G, but the representation of each
functions is better since more PGTOs are used.

6-3/1G  Thisis a triple split valence basis, where the core orbitals are a contraction of
six PGTOs and the valence split into three functions, represented by three, one, and one
PGTOs, respectively.'”
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To each of these basis sets can be added diffuse’’ and/or polarization funciions.
Diffuse functions are normally s- and p-functions and consequently go before the G.
They are denoted by + or 4+, with the first + indicating one set of diffuse s- and
p-functions on heavy atoms, and the second + indicating that a diffuse s-function 1s also
added to hydrogens. The arguments for adding only diffuse functions on non-hydrogen
atoms is the same as that for adding only polarization functions on non-hydrogens
{Section 5.2). Polarization functions are indicated after the G, with a separate
designation for heavy atoms and hydrogens. The 6-31+G(d} is a split valence basis
with one set of diffuse sp-functions on heavy atoms only and a single d-type polarization
function on heavy atoms. A 0-3114--+G(2df.2pd) is similarly a triple split valence
with additional diffuse sp-tunctions, and two d- and one f-functions on heavy atoms and
diffuse s- and two p- and one d-functions on hydrogens. The largest standard Pople style
basis set 1s 6-311++G(3df, 3pd). These types of basis sets have been derived for
hydrogen and the first row elements, and some of the basis sets have also been derived
for second and higher row elements.

If only one set of polarization functions 1s used, an allernative notation in terms of * is
also widely used. The 6-31G# basis is identical to 6-31G{d), and 6-31G=x is identical (o
6-31G(d.p). A special note should be made for the 3-21G* basis. The 3-21G basis is
basicly too small to support polarization functions (it becomes unbalanced). However,
the 3-21G basis by itself performs poorly for hypervalent molecules, such as sulfoxides
and sulfones. This can be substantially improved by adding a set of d-functions, The
3-21Gs basis has only d-functions on second row elemenis {it is sometimes denoted
3-21G(x) to indicate this), and should not be considered a polarized basis. Rather, the
addition of a set of d-functions should be considered an ad hoc repair of o known flaw.

5.4.2 Dunning-Huzinaga Basis Sets

Huzinaga determined unceniracted energy optiruzed basis sets up to (18s6p) for first
row elements.”” This was later extendad to (14s9p) by van Duijneveldt'™ and up to {18s,
[3p) by Partr'idge.ls Dunning used the Huzinaga primitve GTOs to derive varous
contraction schemes (DH type basis sets).'® A DZ type basis can be made by a
contraction of the (9s5p/4s) PGTO to [4s2p/2s]. The contraction scheme is §,1,1,1 for
s-functions, 4,1 for the p-functions, and 3,1 for hydrogen. A widely used split valence
type basis is a contraction of the same primitive set to [332p/2s] where the s-coniraction
is 7.2,1 (note that one primitive enters twice). A widely used TZ type basis (actually only
a triple split valence) is a contraction of the (10s8p/3s) to [5s3p/3s], with the contraction
scheme 5,3,1,1,1 for s-functions, 4,1,1 for p-functions, and 3,1,} for hydrogens. Again a
duplication of one of the s-primitives has been allowed.

McLean and Chandler developed a similar set of contracted basis sets from
Huzinaga’'s primitive optimized set for second row elements.!” A DZ Lype basis is
derived by contracting (1238p) — {5s3p], and a TZ type is derived by contracting
(13s9p) — [6sdp]. The latter contraction is 6,3,1,1,1,1 for the s-functions and 4,2, 11
for the p-functions, and is eften used in connection with the Pople 6-31G when second
row elements are present.

The Dunning-Huzinaga type basis sets do not have the restriction of the Pople style
basis seis of equal exponents for the s- and p-functions, and they are therefore som.e\.\-'hllf
more flexible, but computationally also more expensive. The major determining factor.
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however, is the number of basis functions and less the exact description of each function.
Normally there is little difference in the performance of different DZ or different TZ
type basis sets.

The primary reason for the popularity of the Pople and DH style hasis sets is the
extensive calibration available. There have been so many calculations reported with
these basis sets that 1t is possible to get a fairly good idea of the level of accuracy that
can be aitained with a given basis. This is of course a self-sustaining procedure, the more
caleulations that are reported with a given basis, the more popular 1f becomes. since the
calibration set becomes larger and larger.

5.4.3 MINI, MIDI and MAX] basis sets

Tatewaki and Huzinaga optimized minimum basis sets for a large part of the periodic
systen.'® The MINI-i (i = 1-4) basis are all minimum basis sets with three PGTOs in
the 2s CGTO and varying numbers of PGTOs in the 1s and 2p CGTOs. In terms of
PGTOs the MINI-1 15 {38,35,3p), MINI-2 is {3s,35,4p), MINI-3 is {4s5,35,3p) and MINI-4
is (45,3s,4p). These MINI basis sets in general perform better than STO-3G, but it should
be kept in mind that they still are minimum basis sets. The MIDI-i basis sets are
identical to MINI~, except that the outer valence function is decontracted. The MAXI-:
basis sets all employ four PGTOs for the 2s CGTO and between five and seven PGTOs
for the 1s and 2p CGTOs. The valence orbitals are gplit into three or four functions, and
MAXI-1 is (955p) — [4s3p] (contraction 5,2.1,1 and 3,1,1), MAXI-3 (10s6p) — [Ssdp]
(contraction 6,2,1,1,1 and 3,1.1,1} and MAXI-S is (11s7p) — [Ssdp] (contraction
7,201,171 and 4.1,1,1).

5.4.4 Atomic Natural Orbiftals Basis Sets

All of the above basis sets are of the segmented contraction type. Modern contracted
basis sets aimed at producing very accurate wave functions often employ a general
contraction scheme. The ANO and cc basis sets below are of the general contraction
type.

The idea in the Aromic Natural Orbitals (ANO) type basis sets is to contract a large
PGTO set to a fairly small number of CGTOs by using natural orbitals from & correlated
calculation on the free atom, typically at the CISD level.'” The natural orbitals are those
which diagonalize the density matrix, and the eigenvalues are called arbital cccupation
numbers (see Section 9.5). The orbital occupation number is the number of electrons in
the orbital. For an RHF wave function, ANOs would be identical io the canonical
orbitals with occupation numbers of exactly 0 or 2. When a correlated wave function is
used, however, the occupation number may have any value between 0 and 2. The ANO
contraction selects the important combinations of the PGTOs from the magnitude of the
occupation numbers., A large primitive basis, typically generated as an even-tempered
sequence, may generate several different contracted basis sets by gradually lowering the
selection threshold for the occupation number. The nice feature of the ANO contraction
is that 1t more of less “automatically” generates balanced basis sets, e.g. for neon the
ANO procedure generates the following basis set: [2s1p], [3s2pld]. [4s3p2d1f] and
[5s4p3d2fle]. Furthermore, in such a sequence the smaller ANO basis sels are true
subsets of the larger, since the same primitive set of functions is used.



The Theoretical Background

Ab initic molecular orbital theory is concerned with predicting the properties of
atomic and molecular systems. It is based upon the fundamental laws of quantum
mechanics and uses a variety of mathematical transformation and approximation
techniques to solve the fundamental equations. This appendix provides an
intreductory overview of the theory underlying ab initio electronic structure
methods. The final section provides a similar overview of the theory underlying
Density Punctional Theory methods.

‘The Schrédinger Equation

Quantum mechanics explains how entities like electrons have both particle-like and
wave-ltke characteristics. The Schrédinger equation describes the wavefunction of a

particle:
—h? . ih AW (7, t
v viwey = mdEiny (1]
8n’m 2k dt

In this equation, ¥ is the wavefunction, »1 is the mass of the particle, k is Planck’s
constant, and V is the potential field in which the particle is moving. " The product of
¥ with its complex conjugate ("P*'¥, often written as M) is interpreted as the
probability distribution of the particle.

The Schradinger equation for a collection of particles like a molecule is very similar.
In this case, ¥ would be a function of the coordinates of all the particles in the system
as well as £,

The energy and many other properties of the particle can be obtained by soiving the
Schradinger equation for ¥, subject to the appropriate boundary conditions. Many
different wavefunctions are solutions to it, corresponding to different stationary states
of the system.

¥ The differential operator on the left side of the equation is known as “del-squared.” The operator del is
equivalent to partial differentiation with respect to x, , and z components:

¢, ¢ ¢
V:H'+8_)J_J+ER
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If V 15 not a function of time, the Schrodinger equation can be simplified using the
mathematical technique known as separation of variables, If we write the
wavefunction as the product of a spatial function and a time function:

. Yir,t) = y(ryc(1) 12)
and then substitute these new functions into Equation 1, we will obtain two
equations, one of which depends on the position of the particle independent of time
and the other of which is a function of time alone. For the problems in which we are

interested, this separation is valid, and we focus entitely on the familiar
time-independent Schrodinger equation:

Hy(r) = Ey{z) 3]
where E is the energy of the particle, and H is the Hamiltonian operator, equal tor

2
H=-——-V21V 4

81 m

The various solutions to Equation 3 correspond to different stationary states of the
particle {molecule). The one with the lowest energy is called the ground state. .
Equation 3 is a non-relativistic description of the system which is not valid when the =
velocities of particles approach the speed of light, Thus, Equation 3 daes not givean - - -
accurate description of the core electrons in large nuclei,

Note also that Equation 3 is an efgenvalue equation; an equation 1o which an operator
acting on a function produces a multiple of the function itself as its result, having the

general form:

Opf=cf |

where Op is ar operatos, fis a function, and ¢ is a constant. The set of functions for .
which the equation holds aze its eigenfunctions, each of which has an associated y‘ahlc o
for ¢, known as its eigenvalue. In the case of the Schrodinger equation, the eigenvalues * -
ate the energies corresponding to the different stationary states of the 'mokCUl?"_ '
system. T
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The Schridinger Equation

The Molecular Hamiltonian

For a molecular system, ¥ is a function of the pogitions gf the electrons and the nuclei
within the molecule, which we will designate as r and R, respectively. These symbols
are a shorthand for the set of component vectors describing the pesition of each
particle. We'll use subscripted versions of them to denote the vector corresponding to
a- particular electron or nucleus: r;and R;. Note that electrons are treated
individually, while each nucleus is treated as an aggregate; the component nucieons
are not treated individually.

The Hamiltonrian is made up of kinetic and potential energy terms:
H=T+V [6]

The kinetic energy is a summation of V2 over all the particles in the molecule:

2 2 2 2
h z 1 d d

T = -5 r?["—a—z—+—*—.,+"——,,) {7]
8n” P ax, dy, 9z,

The potential energy component is the Coulomb repulsion between each pair of
charged entities {treating each atornic nuciens as a single charged mass}):

4EE02 2 Ar (8]

k<]

where Arj; is the distance between the two particles, and ¢; and:¢ are the charges on
particles 7 and k. For an electron, the charge is -¢, while for a nucleus, the charge is Ze,
where 7 Is the atomic number for that atom. Thus,

J 9]

The first term corresponds to electron-nuclear attraction, the second to
electron-electron repulsion, and the third to nuclear-nuclear repulsion.

electrons nuclet 2 electrons nuclef
V- 22[ 1y 3 (£ }+zz[

i j<i J<l
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Atomic Units

The fundamental equations of quantum chemistry are usually expressed in units
designed to simplify their form by eliminating fundamental constants, The atomic
unit of length is the Bohr radius:

h2

= —5—— = 0.529177254 [10]

ag =
4n m e

Coordinates can be transformed to bohrs by dividing them by ay. Energies are

measured in harirees, defined as the Coulomb repulsion between two electrons

separated by 1 bohr:

2

{hartree = S {13
4y

Masses are also specified in terms of electron mass units {i.e. define m,=1}.

We will use these units in all fature equations.

The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is the first of several approximations used to
simplify the solution of the Schrivdinger equation. It simplifies the general molecular
problem by separating nuclear and electronic motions. This approximation is
reasonable since the mass of a typical nucleus is thousands of times greater than that
of an electron. The nuclei move very slowly with respect to the electrons, and the
electrons react essentially instantaneously to changes in nuclear position. Thus, the
electron distribution within a molecular system depends on the positions of the
nuciei, and not on their velocities. Put another way, the nuclei look fixed to the

electrons, and electronic motion can be described as occurring in a field of fired -

nuclei.

The full Hamiltonian for the molecular system can then be written as:

elec =~ I~ ey muci-glec

H=T@ +T"R) +v R+ V0 +v™R) (12

The Born-Oppenheimer approximation allows the two parts of the problem © be
solved independently, so we can construct an electronic Hamiltonian which neglects
the kinetic energy term for the nuclei:
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electrons elecirens nucled
lec 2 8 82)
R R e DI [
i yi 1' R’“ i
electrons Huclel [1 31
I (i)
t =1

Note that the fundamental physical constants drop out with the use of atomic units.

This Hamiltonian is then used in the Schrodinger equation describing the motion of
electrons in the field of fixed nuclel:

elec

Hei’ecwe!ec( R) _ Eeﬁ(R] " (1*_’ ﬁ) [14]

Solving this equation for the electronic wavefunction will produce the effective
muclear potential function E” .7 It depends on the nuclear coordinates and describes
the potential energy surface for the system.

Accordingly, E 7 35 also used as the effective potential for the nudear Hamiltonian:

:mc! mtc(

H ®) +87 (R [15]

This Hamiltonian is used in the Schridinger equation for nuclear motion, describing
the vibrational, rotational, and translational states of the nudlel. Solving the nuclear
Schridinger equation (at least approximately) is necessary for predicting the
vibrational spectra of molecules.

From this point on, we will focus entirely on the electronic problem. We will omit the
superscripts on all operators and functions.

Restrictions on the Wavefunction

We've noted that w2 is interpreted as the probability density for the particle(s) it
describes. Therefore, we require that W be normalized; if we integrate over all space,

¥ Fora given set of nuclear cocrdinates, this corrasponds to the tatal energy predicted by a single point energy
caleulation, although such calculations, of course, do not solve this equation exactly. The approximation
methods used to solve it will be discussed in subsequent sections of this appendix.
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the probability should be the number of particles (the particles are somewhere),
Accordingly, we multiply w by a constant such that:

e 2
J. e " dv = n f {1¢]

particley

——oo

We can do this because the Schrédinger equation is an eigenvalue equation, and in
general, if f is a solution to an eigenvalue equation, then ¢f is also, for any value of ¢,
For the Schrodinger equation, it is easy to show that H{cw) = H{y) and that
E{cy) = c(Evy); thus, if y is a solution to the Schrodinger equation, then oy is as well,

Secondly, W must also be antisymmetric, meaning that it must change sign when two
identical particles are interchanged. For a simple function, antisymrmetry means thar
the following relation holds:

Fgy =i, 0 {171

For an electronic wavefunction, antisymmetry is a physical requirement following
from the fact that electrons are fermions.* It is essentially a requirement that y agree
with the results of experimental physics, More specifically, this requirement means
that any valid wavefunction must satisfy the following condition:

A

kS -~ S a kY a EY i
W, LT, L B, L,y = —wiTy, s Ty T, B (18]

Hartree-Fock Theory

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely krown, rmﬂ"f}"’
difficulty is only that the exact application of these lows leads to equations

much too complicated to be soluble.
- P A, M. Dirag, 1929

* . . « doo ~ Ll

IFyr is complex, the integral becomes: ¢ CJ:”‘ Woydidydz = 0 -

¥ Fermions ate particles that have the propertlesvg’r antisymmetry and 2 half-integral spin quamum : T
among others. R
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Hartree-Fock Theory

An exact solution to the Schriédinger equation is not possible for any but the most
trivial molecular systems. However, a number of simplifying assumptions and
procedures do make an approximate solution possible for a large range of molecules.

Molecular Orbitals

The first approximation we'll consider comes from the interpretation of w2 as a
probability density for the electrons within the system. Molecular orbital theory
decomposes Wy into a combination of molecular orbitals: &y, ¢, ... To fulfill some of
the conditions on ¥ we discussed previously, we choose a normalized, orthogonal set

of molecular orbitals:
J J. J.ti)?tilfdx dy dz

J”cpj ¢;dxdy de

The simplest possible way of making w as a combination of these molecular orbitals is
by forming their Hartree product:

i
-

0; HE
{19]

Y(E) = B(F1) 0fr2) - 9 Lrn) (20]

However, such a function is pot antisymmetric, since interchanging two of the
r;'s —equivalent to swapping the orbitals of two electrons—does not result in a sign
change. Hence, this Hartree product is an inadequate wavefunction.

Electron Spin

The simplest antisymmetric function that is a combination of molecular orbitals is a
determinant. Before forming it, however, we need to account for a factor we've
neglected so far: electron spin. Electrons can have spin up {+32) or down (—%4).
Equation 20 assumes that each molecular orbital holds only one electron. However,
most calculations are dosed shell calculations, using doubly accupied orbitals,
holding two electrons of opposite spin. For the moment, we will limit our discussion
to this case.

We define two spin functions, o and {3, as follows:
a{T)=1 af{d)=0

B(TH=0 Bhy=1 ' 121

Exploring Chemistry with Electronic Structure Methods 259



Appendix

The Theoretical Background

-

BT 9 (TR B (rell) $,(rBUY - 0 (Fal) & (r)B(H)
2 n

9,{T)0(2) 9, (TBR) 4 Ta (@) 0,(1BR) . 8 (F)a(2) 9 (FBR)
2 2

6, (TNAG) UIIBUY  O(Tpel) ,0BGY 9 (TR o (THBG)

(%) d TP do(r)e(n) by(r)B(n) .o b

The o function is 1 for a spin up electron, and the P function is 1 when the electron i
spin down. The notation ofi) and B{i) will designate the values of « and B for
electron 7; thus, o(1} is the value of & for electron 1.

Multiplying a molecular orbital function by ¢t or 8 will include electron spin as part of
the overall electronic wavefunction . The product of the molecular otbital and a spin
fonction is defined as a spin orbital, a function of both the electron’s location and its

~spin.” Note that these spin orbitals are also orthonormal when the COmponent

molecular orbitals are.
We can now build 2 closed shell wavefunction by defining n/2 molecular orbitals for 3

system with » electrons, and then assigning electrons to these arbitals in pairs of
opposite spin:

2

2

BUTAR() 9 (TB)  6y(T)0 () 8, (FBG) . & (Rat) ¢ (F)BG) (2]

ol

2

(32 =1

2

(T)00m) b (5,)B(n)
z

[S42]

Each row is formed by representing all possible assignments of electron 7 to all
orbital-spin combinations. The initial factor is necessary for normalization. Swapping
two electrons corresponds to interchanging two rows of the determinant, which will
have the effect of changing its sign.

This formulation is not just a mathematical trick to form an antisymmetric
wavefunction, Quantum tmechanics specifies that an electron’s location is not
deterministic but rather consists of a probability density; ir this sense, it can be
anywhere. This determinant mixes afl of the possible orbitals of all of the electrons in
the molecular systemn to form the wavefunction.

Some texis use a separate notation for spin orbitals. We will not do so here.
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Basis Sets

The next approximation invelves expressing the molecular orbitals as linear
combinations of 2 pre-defined set of one-electron functions known as basis functions.
These basis functions are usually centered on the atomic nuclei and so bear some
resemblance to atomic orbitals. However, the actual mathematical treatment is more
general than this, and any set of appropriately defined functions may be used.

An individual molecular orbital is defined as:

N
90 = 2 X, [23]
=1

where the coefficients ¢, are known as the molecular orbital expansion coefficients.
The basis functions ¥,...%, are also chosen to be normalized. We follow the wsual
notational convention of using roman subscripts on molecular orbital functions and
Greek subscripts on basis functions. Thus, Ay refers to an arbitrary basis function in
the same way that ¢; refers to an arbitrary molecular orbital.

Gaussign and other aly initio electronic structure programs use gaussian-type atomic
functions as basis functions. Gaussian functions have the general form:

.
nom Do

e{a, ;) =CXy ze [24]

N
where r is of course composed of x, y and z. « is a consjant determining the size

{radial extent} of the function. In a gaussian function, €% is multiplied by powers

{possibly 0) of x, v, and z, and a constant for normalization, so that:

j g? =] [25]

afl space

Thus, ¢ depends on o, I, m and ».
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Here are three representative gaussian functions (s, py and dy, types, respectively):

N 234
e = () e
o 1280&5 1/4 —Clr?
glo,r) = 3 yé 28]

- [204sa’ )
g lo,T) = 7| Xye
; b1

Linear combinations of primitive gaussians like these are used to form the actual basis
functions; the latter are called contracted gaussians and have the form:

Ky = depgp (271
P

where the d_ 's are fixed constants within a given basis set. Note that contracted
functions are also normalized in common practice,

All of these constructions result in the following expansion for molecular orbitals:

0 = ZCDA"XH = Zciﬂ'[zdupgpj [28]..
“ .

B 7

The Variational Principle ,
The problem has now became how to solve for the set of molecular orbital expansion.
coefficients, ¢ ;. Hartree-Pock theory takes advantage of the varjationa} principle,” -
which says that for the ground state of any antisymmetric normalized function of the
electronic coordinates, which we will denote =, then the expectation value for. the.
energy corresponding to Z will always be greater than the energy for the exact
wavefunction: : R
E(Z) > E(¥); ZzY o [Tﬂ
In other words, the energy of the exact wavefunction serves as a lower bound 0 i: .
energies calculated by any other normalized antisymmetric function. Thus, B€"
i i nimize the enesgy of 1Be. -
problem becomes one of finding the set of coefficients that minimiz S

resuitant wavefunction.




Hartree-Fock Theory

The Roothaan-Hall Equations
The variational principle leads to the following equations describing the molecular
orbital expansion coefficients, ¢, , derived by Roothaan and by Hall™:

N
2 (Fuy—&Supicy; =0 L=12_.,N
v=l (30]
Equation 30 can be rewritten in rnatrix form:
FC = SCe 131]

where each element is a matrix, € is a diagonal matrix of orbital energies, each of its
elements g;is the one-electron orbital energy of molecular orbital 7.

F is called the Fock matrix, and it represents the average effects of the field of all the
electrons on each orbital. For a closed shell system, its elements are:

N N

Py = By 4 3 2, Pl (vide) 5 (wpvo) | 122

A=1a6=1

N/ . N . N . .
where H' Vre is another matrix representing the energy of a single electron in the field
of the bare nuclei, and P is the density matrix, defined as:

occupied

Pyo= 22 ¢ L [33]

i=|

The coefficients are summed over the occupied orbitals only, and the factor of two
comes from the fact that each orbital holds two electrons.

Finally, the matrix § from Equation 31 is the overlap matrix, indicating the overlap
between orbitals.

Both the Fock matrix—through the density matrix—and the orbitals depend on the
molecular orbital expansion coefficients. Thus, Equation 31 is not linear and must be
solved iteratively. The procedure which does so is called the Self Consistent Field

T e alter the subscripts slightly here from what has preceded in order ta follow common usage.
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(SCF) method. At convergence, the energy is at a minimum, and the orbitals generate
a field which produces the same orbitals, accounting for the method’s name. The
solution produces a set of orbitals, both occupied (9;; ) and virtual (unoccupied,
conventionally dencted ¢, 5, ). The total number of orbitals is equal to the number of
basis functions used.

The term (kVIAs) in Equation 32 signifies the two-electron repulsion integrals. Under
the Hartree-Fock treatment, each electron sees all of the other electrons as an average
distribution; there is no instantaneous electron-electron interaction included. Higher
level methods attempt to remedy this neglect of electron correlation in varicus ways,
as we shall see.

The general strategy used by the SCF method (aftex initial setup steps) is as follows:

+  Evaluate the integrals. In a conventional algorithim, they are stored on disk
and read in for each iteration. In a direct algorithm, integrals are computed -
a few at a time as the Fock matrix is formed.

+ Form an initial guess for the melecular orbital coefficients, and construct
the density matrix.

4+ Form the Fock matrix.
4+ Solve for the density matrix.

+  Test for convergence. If it fails, begin the next iteration. 1f it succeeds, go on
to perform other parts of the calculation (such as population analysis).

Open Shell Methods

So far, we have considered only the restricted Hartree-Fock method. For open sheil
systems, an unrestricted method, capable of treating unpaired electrons, is needed.!
For this case, the alpha and beta electrons are in different orbitals, resulting in two sets
of molecular orbital expansion coefficients:

o= S, e
B B
q}i = urxal
H

T Referalso to the discussion ofopen shell calculations in Chapter {page 10).
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4 Electron Correlation
Methods

The Hartree—Fock method generates solutions to the Schrodinger equation where the
real electron—electron interaction is replaced by an average interaction (Chapter 3). In a
sufficiently large basis, the HF wave function is able to account for ~ 99% of the total
energy, but the remaining ~ 1% is often very important for describing chemical
phenomena. The difference in energy between the HF and the lowest possible energy in
a given basis set is called the Electron Correlation (EC) energy.! Physically it
corresponds to the motion of the electrons being correlated, on average they are further
apart than described by the HF wave function. As shown below, an UHF type of wave
function is to a certain extent able to include electron correlation. The proper reference
for discussing electron correlation is therefore a restricted (RHF or ROHF) wave
function, although many authors use a UHF wave function for open-shell species. In the
RHF case all the electrons are paired in molecular orbitals. The two electrons in a MO
occupy the same physical space, and differ only in the spin function. The spatial overlap
between the orbitals of two such “pair” -electrons is (exactly) one, while the overlap
between two electrons belonging to different pairs is (exactly) zero, owing to the
orthonormality of the MOs. This not the same as saying that there is no repulsion
between electrons in different MOs, since the electron—electron repulsion integrals
involve products of MOs ({¢;|¢;) = O for i # j, but {¢;¢,lg|d,¢;) and (¢;¢,g|d;¢;) are
not necessarily zero).

Naively it may be expected that the correlation between pairs of electrons belonging
to the same spatial MO would be the major part of the electron correlation. However, as
the size of the molecule increases, the number of electron pairs belonging to different
spatial MOs grows faster than those belonging to the same MO. Consider for example
the valence orbitals for CH,4. There are four intraorbital electron pairs of opposite spin,
but there are 12 interorbital pairs of opposite spin, and 12 interorbital pairs of the same
spin. A typical value for the intraorbital pair correlation of a single bond is ~ 20kcal/
mol, while that of an interorbital pair (where the two MO are spatially close, as in CH)
is ~ 1 kcal/mol. The interpair correlation is therefore often comparable to the intrapair
contribution.
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Since the correlation between opposite spins has both intra- and inter-orbital
contributions, it will be larger than the correlation between electrons having the same
spin. The Pauli principle (or equivalently the antisymmetry of the wave function) has the
consequence that there is no intraorbital correlation from electron pairs with the same
spin. The opposite spin correlation is sometimes called the Coulomb correlation, while
the same spin correlation is called the Fermi correlation, i.e. the Coulomb correlation is
the largest contribution. Another way of looking at electron correlation is in terms of the
electron density. In the immediate vicinity of an electron, here is a reduced probability
of finding another electron. For electrons of opposite spin, this is often referred to as the
Coulomb hole, the corresponding phenomenon for electrons of the same spin is the
Fermi hole.

The HF method determines the best one-determinant trial wave function (within the
given basis set). It is therefore clear that in order to improve on HF results, the starting
point must be a trial wave function which contains more than one Slater Determinant
(SD) ®. This also means that the mental picture of electrons residing in orbitals has
to be abandoned, and the more fundamental property, the electron density, should
be considered. As the HF solution usually gives ~ 99% of the correct answer, electron
correlation methods normally use the HF wave function as a starting point for
improvements.

A generic multi-determinant trial wave function can be written as

L :a0¢HF+Z a;P; (41)
i=1

1

where a usually is close to 1. Electron correlation methods differ in how they calculate
the coefficients in front of the other determinants, aqg being determined by the
normalization condition.

As mentioned in Chapter 5, one can think of the expansion of an unknown MO in
terms of basis functions as describing the MO *"function” in the “coordinate system™ of
the basis functions. The multi-determinant wave function (4.1) can similarly be
considered as describing the total wave function in a “‘coordinate” system of Slater
determinants. The basis set determines the size of the one-electron basis (and thus limits
the description of the omne-electron functions, the MOs), while the number of
determinants included determines the size of the many-electron basis (and thus limits
the description of electron correlation).

4.1 Excited Slater Determinants

How arc the additional determinants beyond the HF constructed? With N electrons
and M basis functions, solution of the Roothaan—Hall equations for the RHF case will
yield N/2 occupied MOs and M — N/2 unoccupied (virtual) MOs. Except for a
minimum basis, there will always be more virtual than occupied MOs. A Slater
determinant is determined by N/2 spatial MOs multiplied by two spin functions to yield
N spinorbitals. By replacing MOs which are occupied in the HF determinant by MOs
which are unoccupied, a whole series of determinants may be generated. These can be
denoted according to how many occupied HF MOs have been replaced by unoccupied
MOs, i.e. Slater determinants which are singly, doubly, triply, quadruply etc. excited
relative to the HF determinant, up to a maximum of N excited electrons. These
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Figure 4.1 Excited Slater determinants generated from a HF reference

determinants are often referred to as Singles (S), Doubles (D), Triples (T), Quadruples
(Q) etc.

The total number of determinants that can be generated depends on the size of the
basis set, the larger the basis, the more virtual MOs, and the more excited determinants
can be constructed. If all possible determinants in a given basis set are included, all the
electron correlation (in the given basis) is (or can be) recovered. For an infinite basis the
Schrédinger equation is then solved exactly. Note that “exact’ is this context is not the
same as the experimental value, as the nuclei are assumed to have infinite masses
(Born—Oppenheimer approximation) and relativistic effects are neglected. Methods
which include electron correlation are thus two-dimensional, the larger the one-electron
expansion (basis set size) and the larger the many-electron expansion (number of
determinants), the better are the results. This is illustrated in Figure 4.2.

In order to calculate total energies with a “chemical accuracy” of ~ 1 kcal/mol, it is
necessary to use sophisticated methods for including electron correlation and large basis
sets, which is only computationally feasible for small systems. Instead the focus is
usually on calculating relative energies, trying to make the errors as constant as possible.

Basic Minimum Dz pzp - Infinite
EC
HF (0%) HF limit
10%
100% “Exact”

Figure 4.2 Convergence to the exact solution
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The important chemical changes take place in the valence orbitals; the core orbitals arc
almost constant. In many cases the interest is therefore only in calculating the
correlation energy associated with the valence electrons. Limiting the number of
determinants to only those which can be generated by exciting the valence electrons is
known as the frozen core approximation. In some cases the highest virtual orbitals
corresponding to the anti-bonding combinations of the core orbitals are also removed
from the correlation treatment (frozen virtuals). The Irozen core approximation is not
justified in terms of total energy; the correlation of the core electrons gives a substantial
energy contribution. However, it is essentially a constant factor, which drops out when
calculating relative encrgies. Furthermore, if we really want to calculate the core
electron correlation, the standard basis sets are insufficient. In order to represent the
angular correlation, higher angular moment functions with the same radial size as the
filled orbitals are needed, e.g. p- and d-functions with large exponents for correlating the
Is-electrons, as discussed in Section 5.4.5. Just allowing excitations of the core electrons
in a standard basis set does not “correlate’ the core electrons.

There are three main methods for calculating electron correlation: Configuration
Interaction (CI}, Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC).
A word of caution before we describe these methods in more details. The Slater
determinants are composed of spin-MOs, but since the Hamilton operator is independent
of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is
often assumed that the HF determinant is of the RHF type. Finally, many of the
expressions below involve double summations over identical sets of functions. To ensure
only the unique terms are included, one of the summation indices must be restricted.
Alternatively, both indices can be allowed to run over all values, and the overcounting
corrected by a factor of 1/2. Various combinations of these assumptions result in final
expressions which differ by factors of 1/2, 1/4 etc. from those given here. In the present
book the MOs are always spin-MOs, and conversion of a restricted summation to an
unrestricted is always noted explicitly.

Finally a comment on notation. The quality of a calculation is given by the level of
theory (i.e. how much electron correlation is included) and the size of the basis set. In a
commonly used /-notation, introduced by J. A. Pople, this is denoted as “‘level/basis”. If
nothing further is specified, this implies that the geometry is optimized at this level of
theory. As discussed in Section 5.5, the geometry is usually much less sensitive to the
theoretical level than relative cnergies, and high-level calculations are therefore often
carried out using geometries optimized at a lower level. This is denoted as “level2/
basis2//1levell/basis1’, where the notation after the // indicates the level at which the
geometry is optimized.

4.2 Configuration Interaction

This is perhaps the easiest method to understand. 1t is based on the variational principle
(Appendix B), analogous to the HF method. The trial wave function is written as a linear
combination of determinants with the expansion coefficients determined by requiring
that the energy should be a minimum (or at least stationary), a procedare known as
Configuration Interaction (CI). The MOs used for building the excited Slater
determinants are taken from a Hartree—Fock calculation and held fixed. Subscripts S,
D, Tetc. indicate determinants which are singly, doubly, triply etc. excited relative to the
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HF configuration.
Vo =apbscr+ Y asPs+ > ap®p+ > ar®r...= > a2 (4.2)
S D T pay

This is an example of a constrained optimization, the energy should be minimized under
the constraint that the total CI wave function is normalized. Introducing a Lagrange
multiplier (Section 14.6), this can be written as

L=YaHYa)~ A[(Ya|Pa) -1 (4.3)

The first bracket is the energy of the CI wave function, the second bracket is the
norm of the wave function. In terms of determinants (eq. (4.2)), these can be written as

(W HIW o) = Z Z a;a;(®|H|® ;) ZazE +3 ) aa(@H[D))

i=0  j#i

WalVen) = Zzaaj ©i[0;) =) al(@fd) =) af

i i=0 i=0

(4.4)

The diagonal elements in the sum involving the Hamilton operator are energies of the
corresponding determinants. The overlap elements between different determinants are
zero as they are built from orthogonal MOs (eq. (3.20)). The variational procedure
corresponds to setting all the derivatives of the Lagrange function (4.3) with respect to
the a; expansion coefficients equal to zero.

gj _2Za, (B|H|®;) —2Xa; =0
ai(<<I>i|H]<I>,ﬁ> —A)+ Z aj(®;H|®;) =0 (4.5)
. J#
a,-(E,; — /\) —+ Z aj<<I>l|H{<I)j> =0

T

If there is only one determinant in the expansion (a¢ = 1), the last equation shows that
the Lagrange multiplier is the (CI) energy, A = E.

As there is one equation (4.5) for each ¢, the variational problem is transformed into
solving a set of CI secular equations. Introducing the notation H; = (®;|H|®;) the
matrix equation becomes

HO()—E .Hm H()j agp 0
H]() 1‘111 —-F ... Hlj al 0
TR I T I (4.6)
Hj() Hjj—E a; 0

which in shorthand notation may be written as (H—EI) a=0 or as Ha = Ea. Solving
the secular equations is equivalent to diagonalizing the CI matrix, see Chapter 13. The
CI energy 1s obtained as the lowest eigenvalue of the CI matrix, and the corresponding
eigenvector contains the a; coefficients in front of the determinants in eq. (4.2). The
second lowest eigenvalue corresponds to the first excited state etc.



4.5 Size Consistency and Size Extensivity

As mentioned above, full CI is impossible, except for very small systems. The only
general applicable method is CISD. Consider now a series of CISD calculations in order
to construct the interaction potential between two H; molecules as a function of the
distance between them. Relative to the HF wave function, there will be determinants
which correspond to single excitations on only one of the H, fragments (S-type
determinants), single excitations on both (D-type determinants), and double excitations
only on one of the H, fragments (also D-type determinants). This will be the case at all
intermolecular distances, also when the separation is very large. In that case, however,
the system is just two H, molecules, and we could consider calculating the energy
instead as twice the energy of one H, molecule. A CISD calculation on one H; molecule
would generate singly and doubly excited determinants, and multiplying this by two,
would generate determinants which are quadruply excited for the combined Hy system.
A CISD calculation of two H, molecules separated by say 100 A will not give the same
energy as twice the results from a CISD calculation on one H, molecule (this will be
lower). This problem is referred to a Size Inconsistency. A very similar, but not identical
concept, is Size Extensivity. Size consistency is only defined if the two fragments are
non-inkeracting (separated by say 100 A) while size extensivity implies that the method
scales properly with the number of particles, i.e. the fragments can be interacting
(separated by say SA) Full CI is size consistent (and extensive), but all forms of
truncated CI are not. The lack of size extensivity is the reason why CISD recovers less
and less electron correlation as the systems grow larger.

t



4.9 Coupled Cluster Methods

Perturbation methods add all types of corrections (S, D, T, Q etc.) to the reference wave
function to a given order (2, 3, 4 etc.). The idea in Coupled Cluster (CC) methods is to
include all corrections of a given type to infinite order.!” The (intermediate normalized)
coupled cluster wave function is written as

T =e'd
_ 1o 5 i (4.46)
=14+T+ T+ Ly Z T
where the cluster operator T is given by
T=T,+T,+T3+...+Ty (4.47)
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The T; operator acting on a HF reference wave function generates all ith excited Slater
determinants.

occ  vir
T =30 3" o

oéc v(izr (448)
T =303 ey

i<j a<b

It is customary to use the term amplitudes for the expansion coefficients z, which are
equivalent to the a; coefficients in eq. (4.1).
From egs. (4.46) and (4.47) the exponential operator may be written as

!

eT:1+T1+(T2+2

1
T%) + <T3 + T-T +6T§>
(4.49)

1, 1 R
+<T4+T3T1+5T2+2T2T‘+24T]>+...

The first term generates the reference HF and the second all singly excited states. The first
parenthesis generates all doubly excited states, which may be considered as connecred
(T,) or disconnected (T %). The sccond parenthesis generates all triply excited states,
which again may be either “true” (T'3) or “_product” triples (T,Ty, T';’ ). The quadruply
excited states can similarly be vicwed as composed of (ive terms, a true quadruple and
four product terms. Physically a connected type such as T4 corresponds to four electrons
interacting simultaneously, while a disconnected term such as T% corresponds to two
non-interacting pairs of interacting clectrons.
With the coupled cluster wave function (4.46) the Schrodinger equation becomes

He'dy=Ee", (4.50)
Multiplying from the left by ®; and integrating gives
(DoHeT|®g) = Ece(Pole™®y)
(Oo|He™|@g) = Ecc(®o|(1+ Ty + Ty +---)®y) (4.51)
E. = (®o/He Do)

Expanding out the exponential in eq. (4.46) and using the fact that the Hamilton operator
contains only one- and two-electron operators (eq. (3.24)) we get

Ece = (Po[H|(1 + Ty + Ty +1T7) D)
Ece = (®o[H|®0) + (Do[H|T o) + (Do[H[T2®0o) 4 5 (Bo[H|T1®)

occ  vir occ  vir (452)
Ew=Eo+ Y > t{DHI®) 4 Y > (8 4 17th — 1) (Do [H|D
i a i<j a<h

When using HF orbitals for constructing the Slater determinants, the first matrix
elements are zero (Brillouins theorem) and the second matrix elements are just
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two-electron integrals over MOs (eq. (4.7)).

occ  vir

Ece=Eo+ Y > (18 + 18] — 121 ((9i0jldabs) — (0:0]dpda)) (4.53)

i<j a<b

The coupled cluster correlation energy is therefore determined completely by the singles
and doubles amplitudes and the two-electron MO integrals.

Only equation for the amplitudes is obtained by multiplying the Schrodinger equation
(4.50) from the left by a singly excited determinant ($¢)" and integrating.

(s [HeT|®g

(@ H[(14+ T +To+3T7+ T35+ T T2 +1T7)

(@5 H|®o) + (B, [HT Do) + (P [H|T2®0) + 5 (P [H|T TP,
+(®¢|HT3P0) + (B¢, [H|T T Do) + 1 (¢ |H|T]®,

:ECC<®,€"|€T®O>
:ECC<(I)fn|T1(I>O>

L e e

= Ecc(®},|T1Po)
(4.54)

Only the indicated terms survive in the expansion when the orthogonality of the Slater
determinants and the nature of the Hamilton operator is considered. The first term in the
last equation is again zero due to Brillouins theorem, and the remaining forms a coupled
set of equations of all singles, doubles and triples amplitudes (substituting in the
expression for the energy, eq. (4.52)). Other equations connecting amplitudes may be
obtained by multiplying from the left by a double, triple etc. excited determinant and
integrating.

4.9.1 Truncated Coupled Cluster Methods

So far everything is exact. If all cluster operators up to T y are inlcudes in T, all possible
excited determinants are generated and the coupled cluster wave function is equivalent
to full CI. This is as already stated impossible for all but the smallest systems. The
cluster operator must therefore be truncated at some excitation level. When the T
operator is truncated, some of the terms in the amplitude equations will become zero,
and the amplitudes derived from these approximate equations will no longer be exact.
The energy calculated from these approximate singles and doubles amplitudes (eq.
(4.53)) will therefore also be approximate. How severe the approximation is depends
‘on how many terms are included in T. Including only the T operator does not give
any improvement over HF, as matrix elements between the HF and singly excited
states are zero. The lowest level of approximation is therefore T =T, referred to as
Coupled Cluster Doubles (CCD) Compared to the number of doubles, there are
relatively few singly excited states. Using T=T | 4+ T, gives the CCSD model which
is only slightly more demanding than CCD, and yields a more complete model. Both
CCD and CCSD involve a computational effort which scales as M® in the limit of a
large basis set. The next higher level has T=T,+T,+T3 giving the CCSDT
model'® This involves a computational effort which scales as M®, and is more
demanding than CISDT. It (and higher-order methods like CCSDTQ) can consequently
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only be used for small systems, and CCSD is the only generally applicable coupled
cluster method.

Let us look in a bit more detail at the CCSD method. In this case we have (egs. (4.46)
and (4.47)).

T = 14 T+ (To +4T7) + (ToT) + §T7) + (G T3 + 3 ToT + 4 TY) +
(4.55)
The CCSD energy is given by the general CC equation (4.53), and amplitude equations

are derived by multiplying (4.50) with a singly excited determinant and integrating
(analogously to eq. (4.54)).

He |H|(1+ T] -+ (T?_ +%T2> - (T Tl ‘*’lTS))@ > ECCSD<@”L‘T1(I)O>

(@ m\Hl@ ) -+ (@ [H|T Do) + (B4 [H|(T2 4+ 3T7) Do)
+<‘Pm(HI(T2T1 +3T])®o) = Ecesp Y 1P, |07)

ia

(@5, H|Po) +Z (@7 B|PF) + D (15 + 1] — 11 7) (@] [HIOT)
ijab
Y A 4 (@ HIOES) = Ecesnt,
ijkabc
(4.56)
The notation (¢ t ..) indicates that several other terms involving permutations

of the indices are omltted Multiplying eq. (4.50) with a doubly excited determinant
gives

< I7IH‘H\(1+T1+(T’I+ >+(T2T1+1T3>
( T2 + 1T7T2 + ﬁT4))(1')0> = ECCSD<(I),£,,[(T2 + %T%)‘D0>

(®F,H|®o) + (2 [H|T Do)
#(OLRT: + T 00) + @ HI(TT 4 Tou)
+ (L HIGTS +4ToT] + 5 TH o) = Ecesp D (15 + 151} — 1717) (@7, |9F)
ijab
(@, H|o) +Z LMD + ) (12 4 1fel — tl10) (D [HIDL)
ijab
3l (@ H(R)
ijkabc
+ D G 4 ] (@ HIR )
ijklabed
= ECCSD(Zmn +tmtr’: ‘ij:z n) o (457>

The equations (4.56) and (4.57) involve matrix elements between singles and triples and
between doubles and quadruples. However, since the Hamilton operator only contains
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one- and two-clectron operators, these are actually identical to matrix elements between
the reference and a doubly excited state. Consider for example <<I>fn|H|<I>?]-Z”>. Unless m
equals etther i, j or k, and e equals either a, b, or ¢, there will be one overlap integral
between different MOs which makes the matrix element zero. If for example m = k and
e = c, then the MO integral over these indices factor out as 1, and the rest is equal to a
matrix element (<I)O|H\<I>f]b) Similarly, the matrix element (@f,{niH!@Z,bcﬁd) between a
doubly and a quadruply excited determinant is only non-zero if mn matches up with two
of the ijk/ indices, and e¢f matches up with abcd. Again such non-zero matrix elements
are equal to matrix elements between the reference and a doubly excited determinant,
eq. (4.7).

All the matrix elements can be evaluated in terms of MO integrals, and when the
expression for the energy (4.53) is substituted into (4.56) and (4.57), they form
coupled non-linear equations for the singles and doubles amplitudes. The equations
contain terms up to quartic in the amplitudes, e.g. (tf)4 (since H contains one- and
two-electron operators), and must be solved by iterative techniques. Once the
amplitudes are known, the energy and wave function can be calculated. The important
aspect in coupled cluster methods is that excitations of higher order than the truncation
of the T operator enter the amplitude equation. Quadruply excited states, for
example, are generated by the T3 operator in CCSD, and they enter the amplitude
equations with a weight given as a product of doubles amplitudes. Quadruply excited
states influence the doubles amplitudes, and thereby also the CCSD energy. It is the
inclusion of these products of excitations that makes coupled cluster theory size
extensive.

In the above the coupled cluster equations have been derived by multiplying the
Schrédinger equation with (®ol, (®¢| and (®7 |. An alternative way of deriving the
coupled cluster equations is to multiply with (®ole T, (¥¢|e~T and (@7 |e~T. Just as

e is an excitation operator working on the function to the right, e =T is a de-excitation

operator working on the function to the left. Thus (®gle™T tries to generate de-
excitations from the reference, which is impossible, i.e. (Pole™T = (®o|. However
<<I>fn|e_T generates in addition to the singly excited state also the reference wave
function. Similarly (®¢ e™" generates additionally the reference and singly excited
states. The main advantage is that the coupled cluster equations are obtained directly
without having to substitute in the expression for the energy in the amplitude equations.



In This Appendix;

Goussian Input
File Format

Constructing
Z-matrices

Overview of Gaussian Input

We've already looked briefly at Gaussian input in the Quick Start. Here we present a
mere formal definition and discuss the various molecule specification options.

Gaussian input is designed to be free-format and extremely flexible. For example, it is
not case-sensitive, and keywords and options may be shortened to a unique
abbreviation.

Input File Sections

Gaussign input {which is the same for all versions of the program, including the
Window version) has the basic structure described in the following tabje. Note that
the input sections marked with an asterisk are required in every input file:

Input Section Contents

Link 0 Commands Defines the locations of scratch files and job resource limits.
*Route Section Specifies the job type and model chemistry,

*blank line Separates the route section from the title section.

*Tite Section Describes the job for the output and archive entry,

*blank line

*Molecule Specification Gives the structure of the molecule to be studied.
*blank line

Variables Section Specifies values for the variables used in the molecule
blank line specification,

Note that the separate input sections are separated from one another by blank lines.
These blank lines are inserted automatically into input files created with the Job Entry
window in the Windows version and need not be entered by the user. If you choose to
create a Gaussian input file using an external Windows editor, however, you must
follow the same rules for input as under other versions of Gaussiar.

Note that some job types require additional sections not listed.

Iaput lines have 2 maximum length of 80 characters.
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The Route Section

The first line of the route section always begins with a pound sign (#} in the first
column. This section specifies the theoretical procedure, basis set, and desired type of
calculation. It may also include other keywords. The ordering of keywords is not
important, Some keywords require options; the following input line ilustrates the
possible formats for keywords with options:

#T RHF/6-31G{d) SCF=Tight Units=(Bohr,Radian) Opt Test
Keyword with: a single opfion . 2 2 options no opiions

The amount of spacing between items is not significant in Gaussian input. In the
route section, commas or slashes may be substituted for spaces if desired (except
within parenthesized options, where slashes don’t work]. For example, the previous
route section used a slash to separate the procedure and basis set, spaces to separate
other keywords, and commas to separate the options to the Units keyword.

The route section may extend over more than one line if necessary, Only the first line
need begin with a pound sign, although any others may The route section is
terminated by a blank line.

The Title Section

The title section consists of one or moze lines of descriptive information about the
job. It is included in the output and in the archive entry but is not otherwise used by
Guussian. This section 15 terminated by a blank line.

Specifying Molecular Structures

Gaussian accepts molecule specifications in several different formats:

4  Cartesian coordinates
4+ Z-matrix format {internal coordinates}
4+ Mixed internal and Cartesian cocordinates

All molecnle specifications require that the charge and spin multiplicity be specified
{as two integers) on the first line of this section. The charge is a positive or negative
integer specifying the total charge on the molecule, Thas, 1 or +1 would be used fora
singly-charged cation, -1 designates a singly-charged anion, and 0 represents a neutral
molecule.

Spin Multiplicity

The spin multiplicity is given by the equation 25 + 1, where § is the total spin for the
molecule. Paired electrons contribute nothing to this quantity. They have a net spin of
zero since an alpha electron has a spin of +% and a beta electron has a spin of -¥%.
Fach unpaired electron contributes +% to S. Thus, a singlet—a system with 70
unpaired electrons-—has a spin multiplicity of 1, a doublet (one unpaired electron)
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Input File Sections

has a spin multiplicity of 2, a triplet (two unpaired electrons of like spin) has a spin
multiplicity of 3, and so on.

Units

The units in a Z-matrix are angstroms for lengths and degrees for angles by default;
the default units for Cartesian coordinates are angstroms. These are also the default
units for lengths and angles used in Gaussian cutput. You can change them to bohrs
and/or radians by including the Units keyword in the route section with one or both of
its options: Bohr and Radian.

Cartesian Coordinate input
Cartesian coordinate input consists of a series of lines of the form:

Atomic-symbol X-coordinate Y-coordinate Z-coordinate

For example, here is the molecular structure for formaldehyde, given in Cartesian
coordinates:

01 _
c 0.0 0.0 ©.0
0 0.0 1.2 0.0
H 0.94 -0.54 0.0
H -0.94 -0.54 0.0

Z-Matrix Input

The other syntax for supplying molecular structures to Gaussian 94 is the Z-matrix. A
Z-matrix specifies the locations of and bonds between atoms using bond lengths,
bond angles, and dihedral {torsion) angles.

Each atom in the molecule is deseribed on a separate input line within the Z-matrix.
As we consider the procedure for creating a Z-matrix, we'll use hydrogen peroxide as

an example. These are the steps to do so:

1. Choose o starting atom in the molecule, and conceptually
place it at the origin in three dimensional space.

The first line of the Z-matrix consists solely of the label for this atom. An atom label is
made up of its atomic symbol optionally followed by an integer (ro spaces), used to
distinguish it from the other atoms of the same type (e.g. H1 for the first hydrogen,
H2 for the second one, and so on).

We'll use the left oxygen atom in the illustration as our first atom:

0l
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2. Choose another atom bonded to the first atom. Place it along
the Z-axis, and specify the length of the bond connecting the
two aftoms.

This second input line will include the atom fabel of the second atom, the label of the
atomn it is bonded to (the first atom), and the bond length, in that order. Iterns may be
separated by spaces, tabs or commas.

We'll use the hydregen atom bonded to the first oxygen for our second atom:

Ql
H1 01 .9

3. Choose a third atom bonded to either of the previous two
atoms and specify the angle formed by the two bonds,

This angle locates the molecule’s position in the XZ-plane. This input line will inciude
the new atom’s label, the atom it is bonded to and the bond length, the label of the
other atom forming the bond angle, and the angle’s value.

We have only one choice for the third atom in our Z-matrix, the second oxygen atom:

oL
H1I 01 0.9
02 01 .4 HL 105.0

The new line illustrates an important point about numeric vatues within Z-muatrices.
Since they correspond to floating point guantities, they must include a decimal point,
as in the value above, This is truze even for a value of 0.

4. Describe the positions of ail subsequent atoms by specifying:

Tts atom label.

An atom it is bonded to and the bond length.

A third atom bonded to it (or to the second atom), and the value of the
resulting bond angle.

A fourth atom bonded to either end of the previous chain, and the value of
the dihedral {torsion) angle formed by the four atoms.

+ ++4

Dihedral angles describe the angle the fourth atom makes with respect to the plane
defined by the first three atoms; their values range from 0 to 360 degrees, or from -180
to 180 degrees. Dihedral angles are easy to visualize using Newman projections. The
illustration shows the Newman projection for hydrogen peroxide, looking down the
0-0 bond. Positive dihedral angles correspond to clockwise rotation in the Newmall
projection.
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More Complex Z-Matrices

Obviously, we'll use the remaining hydrogen atom for the fourth line of our Z-matrix
for hydrogen peroxide. Here is the completed molecule specification:

01 _ Charge and multiphiciiy.
01 Oxygen atgm #1.
H1 0L .8 Hydrogen #1, connected te vxygen #1 by a bond of 0.9 A,

02 01 1.4 HL 105. Oxygen #2: 02-01 = 1.4 A - HI-01-02 = [05°.
H2 02 .9 01 105. HY 120. Hydragen #2: H2-02 bond =09 &; - H2 0201 = 105%
dihedral angle H2-02-01-Hi=130°

Sources for bond lengths, bond angles, and dihedral angles indlude the published
literature, standard references like the CRC series, and previous calculations,
Z-matrices may also be created by the NewZMat utility from data generated by a wide
variety of drawing packages. Refer to the Quick Starr for a sample conversion
operation for your version of Gaussian.

Mixed Internal and Cartesian Coordinates

It is also possible to specify the molecular structure in a format which combines
Cartesian coordinates and Z-matrix style input; this format is referred ic as mixed
internal and Cartesian coordinates. It is useful for systems where some partts of the
molecule are more easily specified in Cartesian coordinates and others are more easily
described as a Z-matrix. Consult Exercise C.2 {page 293) and Appendix B of the
Gaussian 94 User’s Referenice for more information on this topic.

More Complex Z-Mairices

Hg

Constructing a Z-matrix for propene provides s more challenging example. Note that
the atoms inside the red line in the illustration all lie in a plane. First we'll specify the
carbon atoms:

01 Charge and multiplicity.

cl Carbon atom af the head of the double bond.

C2 C1 1.34 Carban arom on the other end of the double bond.
€3 €2 1.52 CL 120. Third carbon atom.

Next, we'll specify the hydrogens on Cl and C2. The bond angles formed with the
double-bonded carbons and each of these hydrogens is 120° We'll pick simple
dihedral angles for each of them:
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